Prague Economic Papers 2024, 33(6):662-690 | DOI: 10.18267/j.pep.879

The Second RP-PCA Factor and Crude Oil Price Predictability

Qi Shi ORCID...
Department of Finance, Zhe Jiang University of Finance and Economics, Hang Zhou, China

Although it is notoriously difficult to utilize financial ratios to forecast the crude oil market prices, our study challenges this perception and reveals that the second risk premium principal component analysis (RP-PCA) factor may contain statistically significant information for both in-sample and out-of-sample forecasts of future crude oil prices. Our evidence illustrates that the second RP-PCA factor substantially outperforms many other popular predictors (approximately 30 conventional predictors) in forecasting crude oil prices and generating adequate higher values of economic profits. We conduct a range of informative tests, including bootstrap simulation, success ratio tests, alternative out-of-sample evaluation periods, and structure break tests. Furthermore, we illustrate that the forecasting ability of the second RP-PCA factor may stem from its ability to forecast oil market sentiment. Our study presents a novel and indicatable financial instrument for policymakers to predict crude oil prices robustly. The theoretical motivation of this study links to Cochrane's (2005) framework for general candidate factors in asset pricing.

Keywords: RP-PCA factor, forecasting, crude oil prices, economic profits, oil market sentiment, policymakers
JEL classification: C53, G12, G17, Q47

Received: March 8, 2024; Revised: September 5, 2024; Accepted: October 24, 2024; Published: December 30, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Shi, Q. (2024). The Second RP-PCA Factor and Crude Oil Price Predictability. Prague Economic Papers33(6), 662-690. doi: 10.18267/j.pep.879
Download citation

References

  1. Alquist, R., Kilian, L., Vigfusson, R. J. (2013). Forecasting the Price of Oil. In Handbook of Economic Forecasting (2, 427-507). Elsevier. Go to original source...
  2. Aastveit, K. A., Bjørnland, H. C., Thorsrud, L. A. (2015). What Drives Oil Prices? Emerging versus Developed Economies. Journal of Applied Econometrics, 30(7), 1013-1028. https://doi.org/10.1002/jae.2406 Go to original source...
  3. Asness, C. S., Frazzini, A., Pedersen, L. H. (2019). Quality Minus Junk. Review of Accounting Studies, 24(1), 34-112. https://doi.org/10.1007/s11142-018-9470-2 Go to original source...
  4. Baumeister, C., Kilian, L. (2012). Real-time Forecasts of the Real Price of Oil. Journal of Business & Economic Statistics, 30(2), 326-336. https://doi.org/10.1080/07350015.2011.648859 Go to original source...
  5. Baumeister, C., Kilian, L. (2014). What Central Bankers Need to Know about Forecasting Oil Prices. International Economic Review, 55(3), 869-889. https://doi.org/10.1111/iere.12074 Go to original source...
  6. Boons, M. (2016). State Variables, Macroeconomic Activity, and the Cross-section of Individual Stocks. Journal of Financial Economics, 119(3), 489-511. https://doi.org/10.1016/j.jfineco.2015.05.010 Go to original source...
  7. Brahmasrene, T., Huang, J. C., Sissoko, Y. (2014). Crude Oil prices and Exchange Rates: Causality, Variance Decomposition and Impulse Response. Energy Economics, 44, 407-412. https://doi.org/10.1016/j.eneco.2014.05.011 Go to original source...
  8. Campbell, J. Y., Vuolteenaho, T. (2004). Bad Beta, Good Beta. American Economic Review, 94(5), 1249-1275. https://doi.org/10.1257/0002828043052240 Go to original source...
  9. Campbell, J. Y., Thompson, S. B. (2008). Predicting Excess Stock Returns out of Sample: Can Anything Beat the Historical Average? The Review of Financial Studies, 21(4), 1509-1531. Go to original source...
  10. Chen, S. S. (2014). Forecasting Crude Oil Price Movements with Oil-sensitive Stocks. Economic Inquiry, 52(2), 830-844. https://doi.org/10.1111/ecin.12053 Go to original source...
  11. Chen, S. S., Chen, H. C. (2007). Oil Prices and Real Exchange rates. Energy Economics, 29(3), 390-404. https://doi.org/10.1016/j.eneco.2006.08.003 Go to original source...
  12. Chib, S., Zhao, L., Zhou, G. (2024). Winners from Winners: A Tale of Risk Factors. Management Science, 70(1), 396-414. https://doi.org/10.1287/mnsc.2023.4668 Go to original source...
  13. Clark, T. E., West, K. D. (2007). Approximately Normal Tests for Equal Predictive Accuracy in Nested Models. Journal of Econometrics, 138(1), 291-311. https://doi.org/10.1016/j.jeconom.2006.05.023 Go to original source...
  14. Cochrane, J. H. (2005). Asset Pricing. Princeton: Princeton University Press.
  15. Cochrane, J. H. (2007). Financial Markets and the Real Economy. In R. Mehra (Ed.), Handbook of the Equity Premium, Amsterdam. The Netherlands: Elsevier. Go to original source...
  16. Cooper, I., Maio, P. (2019). Asset Growth, Profitability, and Investment Opportunities. Management Science, 65(9), 3988-4010. https://doi.org/10.1287/mnsc.2018.3036 Go to original source...
  17. Dai, Z., Kang, J. (2021). Bond Yield and Crude Oil Prices Predictability. Energy Economics, 97, 105205. https://doi.org/10.1016/j.eneco.2021.105205 Go to original source...
  18. Dai, Z., Zhu, H. (2020). Stock Return Predictability from a Mixed Model Perspective. Pacific-Basin Finance Journal, 60, 101267. https://doi.org/10.1016/j.pacfin.2020.101267 Go to original source...
  19. Daniel, K., Hirshleifer, D., Sun, L. (2020). Short-and Long-horizon Behavioral Factors. The Review of Financial Studies, 33(4), 1673-1736. Go to original source...
  20. Deeney, P., Cummins, M., Dowling, M., Bermingham, A. (2015). Sentiment in Oil Markets. International Review of Financial Analysis, 39, 179-185. https://doi.org/10.1016/j.irfa.2015.01.005 Go to original source...
  21. Dickey, D. A., Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series with a Unit Root. Journal of the American Statistical Association, 74(366a), 427-431. https://doi.org/10.1080/01621459.1979.10482531 Go to original source...
  22. Dong, X., Li, Y., Rapach, D. E., Zhou, G. (2022). Anomalies and the Expected Market Return. The Journal of Finance, 77(1), 639-681. https://doi.org/10.1111/jofi.13099 Go to original source...
  23. Elliott, G., Müller, U. K. (2006). Efficient Tests for General Persistent Time Variation in Regression Coefficients. The Review of Economic Studies, 73(4), 907-940. Go to original source...
  24. Fama, E. F., French, K. R. (2015). A Five-factor Asset Pricing Model. Journal of Financial Economics, 116(1), 1-22. https://doi.org/10.1016/j.jfineco.2014.10.010 Go to original source...
  25. Hamilton, J. D., Herrera, A. M. (2004). Comment: Oil Shocks and Aggregate Macroeconomic Behavior: The Role of Monetary Policy. Journal of Money, Credit and Banking, 265-286. Go to original source...
  26. He, M., Zhang, Y., Wen, D., Wang, Y. (2021). Forecasting Crude Oil Prices: A Scaled PCA Approach. Energy Economics, 97, 105189. https://doi.org/10.1016/j.eneco.2021.105189 Go to original source...
  27. Herrera, A. M., Pesavento, E. (2009). Oil Price Shocks, Systematic Monetary Policy, and the "Great Moderation". Macroeconomic Dynamics, 13(1), 107-137. https://doi.org/10.1017/S1365100508070454 Go to original source...
  28. Hou, K., Xue, C., Zhang, L. (2015). Digesting Anomalies: An Investment Approach. The Review of Financial Studies, 28(3), 650-705. Go to original source...
  29. Hou, K., Mo, H., Xue, C., Zhang, L. (2021). An Augmented Q-factor Model with Expected Growth. Review of Finance, 25(1), 1-41. https://doi.org/10.1093/rof/rfaa004 Go to original source...
  30. Huang, D., Jiang, F., Tu, J., Zhou, G. (2015). Investor Sentiment Aligned: A Powerful Predictor of Stock Returns. The Review of Financial Studies, 28(3), 791-837. Go to original source...
  31. Kilian, L. (2009). Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market. American Economic Review, 99(3), 1053-1069. https://doi.org/10.1257/aer.99.3.1053 Go to original source...
  32. Leitch, G., Tanner, J. E. (1991). Economic Forecast Evaluation: Profits versus the Conventional Error Measures. The American Economic Review, 580-590.
  33. Lettau, M., Ludvigson, S. (2001). Consumption, Aggregate Wealth, and Expected Stock Returns. The Journal of Finance, 56(3), 815-849. https://doi.org/10.1111/0022-1082.00347 Go to original source...
  34. Lettau, M., Ludvigson, S. C. (2005). Tay's as Good as Cay: Reply. Finance Research Letters, 2(1), 15-22. https://doi.org/10.1016/j.frl.2004.10.002 Go to original source...
  35. Lettau, M., Pelger, M. (2020). Factors That Fit the Time Series and Cross-section of Stock Returns. The Review of Financial Studies, 33(5), 2274-2325. Go to original source...
  36. Lv, W., Qi, J. (2022). Stock Market Return Predictability: A Combination Forecast Perspective. International Review of Financial Analysis, 84, 102376. https://doi.org/10.1016/j.irfa.2022.102376 Go to original source...
  37. Ma, F., Liu, J., Wahab, M. I. M., Zhang, Y. (2018). Forecasting the Aggregate Oil Price Volatility in a Data-rich Environment. Economic Modelling, 72, 320-332. https://doi.org/10.1016/j.econmod.2018.02.009 Go to original source...
  38. Maio, P. (2013). Intertemporal CAPM with Conditioning Variables. Management Science, 59(1), 122-141. https://doi.org/10.1287/mnsc.1120.1557 Go to original source...
  39. Maio, P., Santa-Clara, P. (2012). Multifactor Models and Their Consistency with the ICAPM. Journal of Financial Economics, 106(3), 586-613. https://doi.org/10.1016/j.jfineco.2012.07.001 Go to original source...
  40. Neely, C. J., Rapach, D. E., Tu, J., Zhou, G. (2014). Forecasting the Equity Risk Premium: the Role of Technical Indicators. Management Science, 60(7), 1772-1791. https://doi.org/10.1287/mnsc.2013.1838 Go to original source...
  41. Newey, W. K., West, K. D. (1987). A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix. Social Science Electronic Publishing. Go to original source...
  42. Pesaran, M. H., Timmermann, A. (1992). A Simple Nonparametric Test of Predictive Performance. Journal of Business & Economic Statistics, 10(4), 461-465. https://doi.org/10.1080/07350015.1992.10509922 Go to original source...
  43. Petkova, R. (2006). Do the Fama-French Factors Proxy for Innovations in Predictive Variables? The Journal of Finance, 61(2), 581-612. https://doi.org/10.1111/j.1540-6261.2006.00849.x Go to original source...
  44. Rapach, D. E., Strauss, J. K., Zhou, G. (2010). Out-of-sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy. The Review of Financial Studies, 23(2), 821-862. Go to original source...
  45. Rapach, D. E., Wohar, M. E., Rangvid, J. (2005). Macro Variables and International Stock Return Predictability. International Journal of Forecasting, 21(1), 137-166. https://doi.org/10.1016/j.ijforecast.2004.05.004 Go to original source...
  46. Rapach, D., Zhou, G. (2013). Forecasting Stock Returns. In Handbook of Economic Forecasting (Vol. 2, 328-383). Elsevier. Go to original source...
  47. Rapach, D. E., Ringgenberg, M. C., Zhou, G. (2016). Short Interest and Aggregate Stock Returns. Journal of Financial Economics, 121(1), 46-65. https://doi.org/10.1016/j.jfineco.2016.03.004 Go to original source...
  48. Ross, S. (1976). The Arbitrage Theory of Capital Asset Pricing. Journal of Economic Theory, 13(3), 341-360. https://doi.org/10.1016/0022-0531(76)90046-6 Go to original source...
  49. Shi, Q., Li, B. (2022). Further Evidence on Financial Information and Economic Activity Forecasts in the United States. The North American Journal of Economics and Finance, 60, 101647. https://doi.org/10.1016/j.najef.2022.101647 Go to original source...
  50. Shi, Q. (2023). The RP-PCA Factors and Stock Return Predictability: An Aligned Approach. The North American Journal of Economics and Finance, 64, 101862. https://doi.org/10.1016/j.najef.2022.101862 Go to original source...
  51. Stambaugh, R. F. (1999). Predictive Regressions. Journal of Financial Economics, 54(3), 375-421. https://doi.org/10.1016/S0304-405X(99)00041-0 Go to original source...
  52. Stambaugh, R. F., Yuan, Y. (2017). Mispricing Factors. The Review of Financial Studies, 30(4), 1270-1315. Go to original source...
  53. Welch, I., Goyal, A. (2008). A Comprehensive Look at the Empirical Performance of Equity Premium Prediction. The Review of Financial Studies, 21(4), 1455-1508. Go to original source...
  54. Yin, L., Yang, Q. (2016). Predicting the Oil Prices: Do Technical Indicators Help? Energy Economics, 56, 338-350. https://doi.org/10.1016/j.eneco.2016.03.017 Go to original source...
  55. Zhang, Y., Ma, F., Shi, B., Huang, D. (2018). Forecasting the Prices of Crude Oil: An Iterated Combination Approach. Energy Economics, 70, 472-483. https://doi.org/10.1016/j.eneco.2018.01.027 Go to original source...
  56. Zhang, Y., Ma, F., Wang, Y. (2019). Forecasting Crude Oil Prices with a Large Set of Predictors: Can LASSO Select Powerful Predictors? Journal of Empirical Finance, 54, 97-117. https://doi.org/10.1016/j.jempfin.2019.08.007 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.