Prague Economic Papers 2011, 20(3):232-249 | DOI: 10.18267/j.pep.398
Exchange Rate Predictions in International Financial Management by Enhanced GMDH Algorithm
- 1 University of Economics, Prague (tauser@vse.cz).
- 2 Czech Technical University, Prague (buryan@labe.felk.cvut.cz).
Exchange rate forecasting is an important financial problem that is receiving increasing attention nowadays especially because of its difficulty and host of practical applications in globalising world of today. The paper presents an enhanced MIA-GMDH-type network, discusses its design methodology and carries out some numerical experiments in the field of exchange rate forecasting. The method presented in this paper is an enhancement of self-organizing polynomial Group Method of Data Handling (GMDH) with several specific improved features - coefficient rounding and thresholding schemes and semi-randomized selection approach to pruning. The experiments carried out include exchange rate prediction and hedging case study where the predictions were used for financial management decision simulation of a virtual company. The results indicate, that the method shows promising potential of self-organizing network methodology. This implies that the proposed modelling approaches can be used as a feasible solution for exchange rate forecasting in financial management.
Klíčová slova: GMDH, self-organizing polynomial networks, time series analysis, exchange rate prediction, FX hedging
JEL classification: F37, G17
Zveřejněno: 1. leden 2011 Zobrazit citaci
Reference
- Buryan, P. (2006), "Time Series Analysis by Means of Enhanced GMDH Algorithm." Dissertation Thesis, CTU Prague.
- Buryan, P. Onwubolu, G. C., Lemke, F. (2007), "Modeling Tool Wear In End-Milling Using Enhanced Gmdh Learning Networks." International Journal Of Advanced Manufacturing Technology, Springer Verlag 2007, Doi 10.1007/S00170-007-1296-1.
Přejít k původnímu zdroji...
- Iba, H., de Garis, H., Sato, T. (1994), "Genetic Programming Using a Minimum Description Length Principle," in Advances in Genetic Programming, Kinnear, K. E. Jr. (ed), Cambridge: MIT, pp. 265-284.
- Ivakhnenko, A. G. (1971), "Polynomial Theory of Complex Systems." IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-1, No. 4, pp. 364-378.
Přejít k původnímu zdroji...
- Kordík P., Šnorek M., Genyk-Berezovskyj M. (2004), "Hybrid Inductive Models: Deterministic Crowding Employed." Proceedings of the International Joint Conference on Neural Networks; Piscataway: IEEE, pp. 2343-2346; ISBN 0-7803-8360-5.
Přejít k původnímu zdroji...
- Lai K. K., Yu L., Wang S. (2007), Foreign-Exchange-Rate Forecasting with Artificial Neural Networks. Springer Verlag, ISBN: 978-0-387-71719-7.
- Madala, H. R., Ivakhnenko A. G. (1994), Inductive Learning Algorithms for Complex Systems Modeling. CRC Press, Boca Raton.
- Madura, J. (2006), International Corporate Finance. 8th Edition. Thomson South-Western. ISBN 0-324-32382-4.
- Mentzel, S. M. (1998), Real Exchange Rate Movements. Springer Verlag, ISBN: 978-3-7908-1081-3.
Přejít k původnímu zdroji...
- Mueller, J. A., Lemke, F., Ivakhnenko A. G. (1998), "GMDH algorithm for complex systems modelling." Mathematical Modelling of Systems, No. 4.
Přejít k původnímu zdroji...
- Park, H. S., Park, B. J., Kim, H. K., Oh, S. K. (2004), "Self-organizing Polynomial Neural Networks Based on Genetically Optimized Multi-layer Perceptron Architecture." International Journal of Control, Automation, and Systems, 2(4), pp. 423-434.
- Taušer, J. (2007), Měnový kurz v mezinárodním podnikání. VŠE Praha, ISBN 978-80-245-1165-8.
- Žamberský, P. (2003), Ekonomie měnového kurzu I. Praha : Nakladatelství Oeconomica, ISBN 80-245-0637-8.
Tento článek je publikován v režimu tzv. otevřeného přístupu k vědeckým informacím (Open Access), který je distribuován pod licencí Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), která umožňuje nekomerční distribuci, reprodukci a změny, pokud je původní dílo řádně ocitováno. Není povolena distribuce, reprodukce nebo změna, která není v souladu s podmínkami této licence.