
232       PRAGUE ECONOMIC PAPERS, 3, 2011

 EXCHANGE RATE PREDICTIONS IN INTERNATIONAL 
FINANCIAL MANAGEMENT BY ENHANCED GMDH 
ALGORITHM

Josef Taušer, Petr Buryan *

Abstract: 
Exchange rate forecasting is an important fi nancial problem that is receiving increasing attention 
nowadays especially because of its diffi culty and host of practical applications in globalising 
world of today. The paper presents an enhanced MIA-GMDH-type network, discusses its design 
methodology and carries out some numerical experiments in the fi eld of exchange rate forecasting. 
The method presented in this paper is an enhancement of self-organizing polynomial Group 
Method of Data Handling (GMDH) with several specifi c improved features - coeffi cient rounding 
and thresholding schemes and semi-randomized selection approach to pruning. The experiments 
carried out include exchange rate prediction and hedging case study where the predictions were 
used for fi nancial management decision simulation of a virtual company. The results indicate, 
that the method shows promising potential of self-organizing network methodology. This implies 
that the proposed modelling approaches can be used as a feasible solution for exchange rate 
forecasting in fi nancial management.
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1.  Introduction 

Despite the fact that the ability of human brain to gather and process information is 
permanently developing, it simply cannot compete with the technological boom of 
the last decades. Due to this information explosion of today people are getting more 
than overwhelmed by large amounts of data that by contemporary technology can be 
measured or just gathered as a side effect of their activity. This ability to collect precise 
and valuable data has in many cases turned into an obstacle prohibiting users from 
gaining information about the processes and systems generating the data. 

Exchange rate movements and their forecasting became an important fi nancial 
problem in the world of today and increasing effort of many researchers is focused 
in this direction. Behaviour of exchange rates is suspected to be of highly non-linear 
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nature and predictions in such environment present very challenging problem to be 
solved. One of the main diffi culties lies in the fact, that exchange rates are affected not 
only by economic measurable factors, but also non-measurable elements of political 
or even psychological character plays their important role. These factors interact in a 
very complex fashion and mainly exchange rate series of short period (daily, weekly) 
exhibit high volatility, complexity and noise.

As a consequence, many models describing exchange rate movements have 
been constructed over past decades. Potential utilisation of such predictions does 
not lie only in the fi eld of scientifi c research and business speculations. As more and 
more companies are entering global markets nowadays, the demand for applicable 
and effi cient predictive tools that could give groundwork for international fi nancial 
management decisions is growing. 

The gravity point of current approaches to exchange rate modelling lies nowadays 
mainly in statistics and econometrics. Exhaustive research was conducted and is still 
going on allowing to uncover at least some of the complexity of the problem. Results 
can be seen e.g. in extended autoregressive models such as the autoregressive random 
variance (ARV) model or autoregressive conditional heteroscedasticity (ARCH) 
model. However, a growing interest in utilisation of machine learning methods such 
as neural networks cannot go unnoticed. A recent review of neural networks based 
exchange rate forecasting can be found e.g. in Lai, Yu &, Wang (2007).

This paper presents employment of enhanced version of GMDH polynomial 
network algorithm into the fi eld of fi nancial predictions. The Group Method of 
Data Handling (or GMDH) was fi rst introduced by Ivakhnenko in the late 1960s 
(Ivakhnenko, 1971) as a means of identifying non-linear relations between input and 
output variables. GMDH has since been improved and applied to a host of practical 
situations (Mueller, Lemke & Ivakhnenko, 1998) which showed that this class of 
multilayered polynomial networks has proved effective in the fi eld for a wide spectrum 
of applications for both modelling and prediction. In this study, we adopt enhanced 
GMDH algorithm and include some experimental studies in exchange rate modelling. 

The remaining sections are organized as follows. Section 2 presents the GMDH 
framework which is the basis for the enhanced MIA-GMDH architecture that is the 
focus of this article. Section 3 describes the detailed enhancements that resulted in 
the enhanced MIA-GMDH presented in this article. Section 4 presents the results of 
experiments carried out, the conclusions from this study are given in Section 5.

2.  Group Method of Data Handling (GMDH) Framework

The algorithm of Group Method of Data Handling (GMDH) was fi rstly introduced 
by Ivakhnenko in 1966 (Ivakhnenko, 1971). Its main purpose was identifi cation of 
relations in large complex non-linear multidimensional systems, their approximation 
and prediction. GMDH searches for optimal structure within the space of multi-
polynomial functions g:Rn R which it realizes as a multilayered polynomial network. 
The main idea behind the algorithm is obtaining a mathematical model of the analyzed 
object produced in an automated heuristic driven self-organizing learning process.

Ivakhnenko employed the approach that every function yn = f(X) can be  represented 
by an infi nite Volterra-Kolmogorov-Gabor (VKG) polynomial of the form: 
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where X(x1, x2, ..., xM) is the vector of input variables and A(a1, a2, ..., aR), R   is the א 
vector of coeffi cients or weights. This is the discrete-time analogue of a continuous 
time Volterra series and can be used to approximate any stationary random sequence 
of physical measurements. 

In the GMDH algorithm, the Volterra-Kolmogorov-Gabor (VKG) series is 
estimated by a cascade of second order polynomials using only pairs of variables 
(Madala & Ivakhnenko, 1994). The corresponding network can be constructed from 
simple polynomial and delay elements. The main function of the model is based on 
forward propagation of signal through nodes of the GMDH net similar to principle 
used e.g. in classical neural nets – input signal is applied to input nodes, the outputs 
of which are then distributed through the structure to upper layers where appropriate 
mathematical combinations are carried out. Each layer consists of simple nodes each 
performing its own polynomial transfer function and passing its output to nodes in the 
next layer. The output of the last layer (consisting of only one node) is the output of 
the whole net. A typical structure of MIA GMDH network can be seen on Figure 1.

Figure 1 
MIA-GMDH-type Network Structure

Two salient features of GMDH polynomial class of networks are: 
– evolving structure of self-organizing networks during training process – there-

fore, there is no need for initial guessing of the number of layers or the number of 
neurons needed in each layer of the network; 

– resistance to over-fi tting – self-organizing networks possess the inherent feature of 
good immunity to over-fi tting, mainly due to the division of the data set before launch-
ing the learning process into two sub-sets: the Training Set, and the Testing Set.
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The coeffi cients of nodes’ transfer functions are estimated during the learning phase 
within of which the whole structure is being automatically built up. This inductive 
approach to the model structure determination notably reduces the amount of a priori 
knowledge required from the user and allows selecting structure that follows best 
given dataset. During the evolution of the learning procedure, network branches that 
do not contribute signifi cantly to the specifi c output can be pruned, thereby allowing 
only the dominant causal relationship to evolve. 

The GMDH network model is constructed during the learning process by the 
following fi ve procedures: 1) Separating the original data into the training and test sets, 
2) Generating combinations of the node input variables in each layer, 3) Calculating 
the optimum partial descriptions, 4) Selecting the intermediate variables and 
5) Considering stopping the multi-layered iterative computation.

The GMDH algorithm generates optimal structure of the model through successive 
generations of partial descriptions (PDs) of data, which are described by quadratic 
regression polynomials most often with two input variables (though more inputs can 
also be allowed). The complexity of the network increases with each training and 
selection cycle through addition of new layers until little or no further improvement in 
fi delity is achieved. Although GMDH provides for a systematic procedure of system 
modelling and prediction, it has also a number of shortcomings. Among the most 
problematic can be stated:

– a tendency to generate quite complex polynomial (since the complexity of the 
network increases with each training and selection cycle through addition of new 
layers) for relatively simple systems (data input);

– an inclination to producing overly complex network (model) when dealing with 
highly nonlinear systems owing to its limited generic structure (quadratic two-
variable polynomial).

Looking for the best structure of the GMDH net during its learning process can 
be considered as a state space search. The original learning process as presented in 
Ivakhnenko (1971) goes through the whole state space of possible combinations 
by iteratively creating new layers of nodes connected with the previous ones. 
When a solution is found that seems to be the locally best (i.e. best within its local 
neighbourhood formed by solutions of other already existing nodes), the model is 
constituted by cutting off nodes that are not connected to the chosen one. It is clear 
that this quickly leads to great expansion of state space to be searched and causes the 
algorithm to be suitable only for simpler models.

Measures taken to prevent such expansion of MIA-GMDH algorithm is mainly 
implementation of node selection on each layer. In order to prevent expansion of the net 
and to reach the model in feasible time, only some of the constructed nodes are selected 
to constitute the layer. In the original MIA algorithm, only a defi ned number of n nodes 
with best evaluation criterion were selected to form the layer, the rest being cut off. 

Only the best nodes for each MIA-GMDH layer are retained and their outputs form 
input to the next layer. Beginning from fi rst layer, the process is continued until the best 
approximation of the last layer is worse than the best approximation of the previous one. 
The fi nal network is the connections of the best nodes from layer to layer until the output 
layer. However, this selection strategy brings along two important drawbacks:
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– throwing away nodes that might play an important role in the model if their outputs 
(and through them their inputs as well) would be combined on the higher level 
results in ”loosing” their inputs;

– fast unifi cation of the layer output (outputs of all nodes in the layer) leads to bad 
performance of regression on next level (small diversity of the layer outputs causes 
unstable regression - due to very large value of condition number of matrix XTX to 
be inverted during regression).

A similarity to such layer pruning can be seen e.g. in evolutionary algorithms 
utilised for GMDH e.g. in Park, Kim & Oh (2004), where also only some of the 
members that form current population are selected to survive, the rest being thrown 
away. A well known fact is that the selection of the best members does not lead to 
gaining the best solution. Keeping the population diversity on acceptable level is one 
of the main issues of evolutionary techniques and might be an inspiration for GMDH 
as well. Realizing this fact, eMIA-GMDH algorithm was proposed in Buryan (2006) 
to deal with introduced problems.

3.  Enhanced MIA-GMDH Algorithm

Trying to offer solution to stated problems with selection, specifi c improved features 
of the enhanced MIA-GMDH-type network were proposed (Buryan, Onwubolu & 
Lemke, 2007) and are described in subsequent subsections. Amongst the major features 
of the enhanced MIA-GMDH-type network are:
– semi-randomized selection approach to pruning (in which only a part of the best 

nodes is selected while the rest is chosen randomly, which gives much better 
pruning solution in each layer);

– coeffi cient rounding and thresholding scheme (in which, coeffi cients that are 
very large or smaller than a specifi ed threshold are rejected to help stabilize the 
regression);

– high level of fl exibility as each node can have non-linear transfer function, a dif-
ferent number of input variables as well as exploit a different order of polynomial.

Table 1 
Node Types (objective functions), Illustration for Two Inputs to a Node

Polynomial type Transfer function (example for two node inputs)

1 polynomial f(X) = f(x1,x2) = a1 + a2x1 + a3x2 + a4x1x2 + a5x1
2 +a6x2

2

2 harmonic (cosine) f(X) = f(x1,x2) = cos(a1 + a2x1 + a3x2 + a4x1x2 + a5x1
2 +a6x2

2)

3 square root f(X) = f(x1,x2) = (a1 + a2x1 + a3x2 + a4x1x2 + a5x1
2 +a6x2

2)1/2

4 inverse polynomial f(X) = f(x1,x2) = (a1 + a2x1 + a3x2 + a4x1x2 + a5x1
2 +a6x2

2)-1

5 logarithmic f(X) = f(x1,x2) = ln(a1 + a2x1 + a3x2 + a4x1x2 + a5x1
2 +a6x2

2)

6 exponential f(X) = f(x1,x2) = exp(a1 + a2x1 + a3x2 + a4x1x2 + a5x1
2 +a6x2

2)

7 arc tangent f(X) = f(x1,x2) = atan(a1 + a2x1 + a3x2 + a4x1x2 + a5x1
2 +a6x2

2)

8 rounded polynomial f(X) = f(x1,x2) = (ar1 + ar2x1 + ar3x2 + ar4x1x2 + ar5x1
2 +ar6x2

2) *)

*) coeffi cients for linear combination gained from the regression as in classical polynomial (row 1) are rounded e.g. 
ari = round(ai)
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Apart from implementing polynomials of different order, seven other  types of 
transfer (objective functions) that have been used in the enhanced GMDH as shown in 
Table 1 allowing the nodes to have also non-polynomial transfer function. Nonlinear 
regression is used to estimate the parameters of non-polynomial nodes. The network 
fi nal structure can be e.g. as shown in Figure 2.

Figure 2 
Graphical-representation of eMIA-GMDH Network Connections after Pruning

3.1  Diversity Problem

By selecting only the best nodes from each layer, the output of the layer gets 
almost homogenous especially in the higher levels. The result of such diversity loss 
is that almost all the nodes have almost the same output objective function value. 
Consequently, the least square method gets unstable rejecting enormous amount of 
coeffi cients during regression. Employing suitable heuristics in the selection process 
could therefore bring positive effects on the net precision.

Consider following problem of linear regression using least squares. A linear 
model in the form of Y = X.b is expected, where vector b is the vector of regression 
coeffi cients, X is a matrix of input data with rows corresponding to observations 
and columns to predictor variables and Y is a vector of time series observations. A 
commonly used approach to get the unknown vector b utilizes pseudo inverse matrix:

 b = inv(XT.X).XT.Y  ,  (2)

which works well in most of the cases. Problems arise, when the values of columns 
in X get close to each other. As a result the condition number of matrix X gets huge 
as well as the values of b produced by regression. The condition number is a measure 
of stability or sensitivity of a matrix - or the linear system it represents - to numerical 
operations (stated in other words, it is not wise to trust the results of computations on 
an ill-conditioned matrix).

This is exactly what happens when selecting only the best nodes on each layer 
according to some fi tness function based on error criterion only. As the nodes with 
output closest to expected value are preferred the output of higher layers (starting often 
as low as on layer 3) gets almost unique which leads to ill conditioned matrices, that 
are constructed for regression from these outputs on higher layers. 

Although regression methods are not the only approach of setting the parameters 
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of node transfer functions, discussion not much different from this can be held for any 
of optimization techniques used because all of them would have to face this diversity 

problem. The main principle of the problem is that it is not possible to gain new 
information about the relation of two time series with almost the same values (e.g. 
differences comparable to the level of measurement noise).

Several ways of solving the problem can be seen:
– modifi cations to the fi tness criterion – modifying the error criterion by some addi-

tional criteria, e.g. complexity criterion – Akaiake, Minimum Description Length 
(Iba, de Garis & Sato, 1994) etc.

– modifi cations to selection principles (discussed in following paragraphs); for dif-
ferent approach see e.g. Kordík, Šnorek &  Genyk-Berezovskyj (2004).

3.2  Semi-Randomised Selection

In the work reported in Buryan (2006) the best found solution to the problem of 
variability is to utilise semi-randomised approach i.e. to enrich the selection of the best 
nodes by randomized selection in the ratio of 1:1. The main principle of this heuristics 
is as follows - when constructing the layer, its size is limited by user defi ned limit – 
desired value of nodes to survive in the layer (can be defi ned either as an absolute 
number or as a proportion of the total count of nodes constructed from outputs of the 
previous layer). The reason of limiting number of layer nodes is to prevent unfeasible 
expansion of nodes on upper layers and to ensure fi nishing the algorithm in reasonable 
time. However, this limit has of course its impact not only on the time of obtaining 
fi nal model but on its accuracy as well.

Previous exhaustive research experimentation (Buryan, 2006) shows that for 
semi-randomized selection approach to pruning, the best pruning solution in each layer 
is gained when the layer after selection constitutes approximately from half of the best 
nodes while the second half of the layer is randomly selected from the rest of the nodes 
(no node being selected twice). Finally, a node with unitary transfer function (y = x1) is 
added to the layer enabling the output of the best node of the previous layer to be used 
also in the following one. Consequently, this is the approach that has been used in the 
enhanced GMDH algorithm presented in this paper.

A conclusion was drawn in Buryan (2006) that best-of selection is needed so that 
the learning process can follow some clear optimization rule while the randomized 
selection ensures the layer diversity, thereby performing local stochastic space 
search, stabilizing the regression and retaining information from nodes that would 
be otherwise lost for future potential use. Another effect of keeping the “best-of” 
approach is the fact, that the unsuitable nodes, that might be left in the layer by random 
selection process may be cut off post facto – at following layers the nodes these will be 
connected to might show too big errors and be removed which means removing their 
input nodes as well.

The typical effect of employing semi-randomised selection can be easily seen in 
box-plot in Figure 3 characterising the error distribution within the nodes of each layer. 
The fi gure presents results of experiments carried out in Buryan (2006) upon Mackey-
Glass time series (input history length of 5 preceding samples, polynomial transfer 
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functions only). The limits of the boxes are set to lower and upper quartile, the line 
splitting the box indicates median error of the layer, blue dots connected with the box 
symbolise outliers i.e. the biggest or the smallest error value respectively.

Figure 3 
Comparison of Standard and Semi-randomized Selection

As depicted in the fi gure, the utilisation of semi-randomised selection helps to 
improve the quality of the layers as a whole – the node errors are smaller and the layer 
is also more diverse (the boxes are bigger i.e. the nodes are not that similar to each 
other as during classical best-of selection). Another impact is limiting the occurence 
of nodes with unstable transfer function (the worst error of classical approach on layer 
5 is out of axis limits). It is clear, that an effort to improve the selection strategy can 
bring positive effects into GMDH modelling and future research on possible heuristics 
seems to be promising.

3.3  Coeffi cient Rounding and Thresholding

In the coeffi cient rounding and thresholding scheme coeffi cients that are in absolute 
value very large or smaller than specifi ed thresholds are rejected in order to help 
stabilize the regression. As discussed earlier, there is high pressure to select nodes the 
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outputs of which are as close to desired output as possible. This consequently leads to 
joining very similar data as inputs into one node which makes the least squares method 
work with ill-conditioned input matrix. Final effects are enormous node coeffi cients 
(several orders higher than maximal value in input or output data) which are likely to 
have pair-wise the same value differing in sign.

Unfortunately, this is the reason why from fi nal node output data ill-conditioned 
input cannot be recognized because the effects of opposite huge coeffi cients zeroize 
upon same inputs and the output vector gets even slightly closer to desired data. 
Evaluation upon the testing dataset might often not discover such behaviour because 
the testing data are often of the same nature as the training dataset and it is probable 
that this node might be left within the model (actually splitting data into training and 
testing dataset presumes similar nature of both datasets – it makes no sense to train 
model on totally different data than it should be used for). 

On the other hand, an ability of generalization is expected from a modelling method 
to consider it useful and a node such as the one described in previous paragraph clearly 
fails on data out of training range as it shows strong signs of over fi tting.

Enhanced MIA-GMDH faces this problem with coeffi cient tresholding and 
rounding scheme. Such overstrained nodes (and especially their outlying coeffi cient 
values) clearly bring no new information to the model. Therefore, large coeffi cients 
get tresholded to user defi ned limits, small coeffi cients (often arising as a result of 
huge coeffi cients in the previous layer) get rounded to zero and it is left to the selection 
mechanism to judge if such node is still good enough to be kept in the layer. Using 
rounded polynomial for the node transfer function is another example of employing 
the advantages offered by the selection procedure.

Of course, thresholding is not the only approach admissible. Another way to deal 
with this problem can be found e.g. in coeffi cient statistical signifi cance tests. However, 
performing these tests for every coeffi cient of every node seems to complicate the 
learning procedure and in comparison with simple rounding/thresholding lengthens 
the run of the algorithm while requires also disposal of more mathematical background 
and its software implementation for the algorithm realisation. The weak point of the 
thresholding approach currently lies in setting of threshold levels. Possible methods 
of setting the threshold levels were not studied much so far and represent an area of 
potential further research. However, the experiments showed that the optimal levels lie 
in tens in case of dataset normalized into both <0; 1> and <-1; 1> interval.

Another positive impact of this operation is making easier the potential fi nal usage 
of the net – generally speaking, only the transfer function of the GMDH model defi ned 
by the coeffi cients can be used instead of implementing the whole network structure. 
Providing the end user a polynomial (or modifi ed polynomial) function is much more 
comfortable for him to implement (can be realized even on standard offi ce software).

4.  Experimental Results

Exchange rate analysis is one of popular prediction tasks for modern algorithms. This is 
mainly due to high level of problem complexity as exchange rates change in subject to 
many infl uencing factors which simply cannot be incorporated fully into the analyses 
(Mentzel, 1998 & Lai, Yu, & Wang, 2007). However, perhaps the main reason, why 
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the exchange rate series balance on the edge predictability is the fact, that these factors 
are often random in their nature.

Exchange rate series with mid-term periods (monthly, quarterly) are not often 
under focus of analyses as they do not offer immediate yields as the daily rates do 
while, on the other hand, the long-term evolution of exchange rate (periods of year 
and more) is often subject to classical regression analysis or cointegration mainly due 
to strong linear relationships with other macroeconomical indicators. However, these 
mid-term exchange rate series remain utmost interesting e.g. for the fi nancial managers 
of companies, because they can help them in their efforts to avoid exchange rate risks. 
Therefore, exchange rates with monthly frequency were selected for the analyses.

Two types of experiments are described in this paper demonstrating utilisability of 
the eGMDH algorithm for time series prediction. First we shortly illustrate performance 
of the enhanced GMDH network by comparing its results to other known approaches 
predicting monthly average JPY/USD exchange rates. The second experiment is a case 
study modelling hedging decision process based on the cash fl ow of a virtual Czech 
internationally active company and real market data and prices.

4.1  Ex-ante Predictions

In order to get closer to real application of the model, ex-ante predictions were 
constructed instead of ex-post predictions that are often stated in research papers. Having 
series x1, .. xn, ex-post predictions usually choose (often at random) some numbers mi, 

such that 0 < mi ≤ n, and remove them from the input dataset. The remaining part of the 
data (training dataset) is then used for model estimation and quality of model is fi nally 
judged by evaluation of model predictions for those “hidden” data (testing dataset). 
However, this approach leads to the fact that samples occurring later than “unknown” 
samples in the series are used for the model estimation as well. It is clear that this 
would be not possible in reality as we simply cannot know what will happen after the 
time we construct the prediction for. 

Ex-ante approach that was used in this paper to model the time series works in 
a more natural way. For each sample that is to be predicted all data values coming 
after it are condemned as unknown as well. Therefore, no bias is added to the model 
estimation process. 

4.2  Monthly Average JPY/USD Exchange Rate Prediction

In this experiment we evaluate prediction power of the eGMDH algorithm by 
comparing its results to other known approaches. Monthly average JPY/USD exchange 
rate time series was selected as the object of the predictions. The analysed dataset 
contained time series described shortly in Table 2 from period starting January 1980 
until December 2006; the predictions were constructed for period from January 2001 
until January 2007.
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Table 2 
Input Data for Monthly Average JPY/USD Exchange Rate Prediction

Time series Frequency Unit

Monthly average JPY/USD Monthly JPY/USD

Discount rates in Japan and USA Monthly %

CPI of Japan and USA Monthly % of 1960 (USA) resp. 1970 
(Japan)

GDP of Japan and USA *) Quarterly current prices, mil. USD

Balance of payments of Japan and USA *) Quarterly current prices, mil. USD

*) step function utilised to convert quarterly to monthly frequency

Modelling results of the series have been summed up in Table 3 and illustrated 
also on following Figure 4. Several classical modelling techniques were used for 
comparison with the eGMDH approach:

– classical linear regression as a representative of most widely used techniques (no 
special data treatment has been carried out for this method),

– NC-model – non-changing model returning the last-known value as prediction 
(same as one sample delay),

– random walk model – variability of random number equal to variability of fi rst 
differences of the time series, 

– classical back propagation-trained neural network with 15 nodes in hidden layer 
and standard node sigmoid transfer function,

– standard generic MIA algorithm with  5 layers, max. 100 nodes per layer.

The eGMDH model was set-up as follows: 5 layers, max. 100 nodes per layer, all 8 
types of transfer function available, 66% of data available was used as training data, 
the rest as test dataset.

Due to the fact, that training of neural network and GMDH of the used 
implementation was infl uenced by random factor (e.g. random splits of the dataset into 
training and testing part, random initialization of neural network, semi-randomized 
selection of eMIA-GMDH nodes), the results in Table 3 present always an average of 
10 runs of the algorithm over the dataset. Quality of model prediction was assessed by 
standard mean square error (MSE) criterion.

 

2
2ˆ( ( ) ( )) ( )

,
x t x t e t

MSE
N N

  
 (3)

N  .. total length of prediction (number of examples), 
x(t) .. the true value, 
ˆ( )x t  .. the value predicted and 
e(t)  .. error of the model.
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Table 3 
Prediction ex ante of Monthly Average JPY/USD Exchange Rates

Model MSE

NC model 6,06

Random walk 23,90

Linear regression 9,34

NN 6,59

MIA GMDH 6,32

eGMDH 5,27

Following conclusions for the eGMDH algorithm can be drawn from the table: 

– The eGMDH algorithm performed to have better accuracy than other models.
– Following only the criterion and thereby selecting just the best n nodes on each 

layer during pruning phase does not necessarily lead to reaching the best results of 
the fi nal model. So, there is sense in looking for a heuristics or – generally speak-
ing – a more complex method that could predict the potential contribution of each 
node to the model as a whole (if the node would be kept).

– Utilisation of non-linear elements brings along additional improvement of accu-
racy. However, one has to be aware of the fact, that network with non-polynomial 
elements loses one of potential advantages of low-layered GMDH nets – transpar-
ent transfer function.

– Limiting maximal values of coeffi cients does not bring along severe deterioration 
of GMDH model accuracy and can be used to make the whole transfer function 
more transparent and also as an element that helps stabilizing the regression.

4.3 Financial Flows and Transaction Exposure - Simulation Analysis

Simulation presented in this paper was based on the cash fl ow of a virtual fi rm and real 
market data and prices in the years 2005-2006. The fi rm sold merchandise on open 
account for €400,000 each month. The payment was always made in 1 month. The fi rm 
was exposed to the exchange rate transaction risk arising from the risk that euro would 
weaken and the seller would receive less Czech korunas.  
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Figure 4 
Prediction ex ante of Monthly Average JPY/USD Exchange Rates, Comparison of bp-NN and 
eGMDH, deviation Interval of +/- 2% (boundary lines)

4.3.1 Prediction Models

The focus of the simulation analysis was the implementation of exchange rate 
predictions based on outputs algorithm eGMDH into the modelled decision process 
of company’s fi nancial management. In order to get close to real situation, all of the 
predictions were constructed by ex-ante approach, i.e. all the models were based only 
on data accessible to the time point of prediction. For each month, a group of ten 
GMDH models were constructed, each of these being restricted to 5 layers consisting 
of maximally 80 nodes. The fi nal prediction was selected by the quality of each model’s 
prediction over historical data using classical mean-squared error (MSE) criterion.
The analysed input dataset consisted of following relevant time series:

– CZK/EUR spot exchange rate (5 preceding historical values),
– 3- and 6-months forward CZK/EUR exchange rates (2 preceding historical values),
– actual discount interest rates in Czech Republic and EU15.
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4.3.2 Hedging Portfolio

Financial management of the company disposed of portfolio consisting of fi ve 
instruments – forward contract, plain vanilla option, the option strategy “Vertical 
Spread” and the option strategy “Ration Forward”. 

Forward Contract

“Forward contract specifi es the amount of a particular currency that will be purchased 

or sold at a predetermined point in the future.” (Madura, 2006). Thus, if the aim is 
to hedge receivables in a foreign currency the corporation may close the position by 
selling the specifi c amount of foreign currency on the forward market.

In the simulation, forward rates were derived from the covered interest rate parity 
condition using LIBOR (London Interbank Offered Rate) and PRIBOR (Prague 
Interbank Offered Rate) as the reference interest rates (see Taušer, 2007). 

Plain Vanilla Option

The virtual fi rm may also close the position by buying a put option, which gives the right 
to sell $400,000 at a predetermined strike price. Since the option gives only the right, 
and not the obligation, to sell a given amount of foreign currency at a predetermined 
strike price, the company has to pay the option premium to the bank. 

Option Strategy “Vertical Spread”

Option strategies generally represent a mixture of different option positions. The most 
popular ones are the so called “zero costs strategies” that represent mix of two or more 
option positions with the same amount of paid and received option premiums. 

The so called “Vertical Spread” strategy consists of two basic option positions 
with the same amount of underlying currency and with different strikes. If the aim is to 
hedge the receivables, the corporation buys one put option, which gives it the right to 
sell a specifi c currency at a predetermined strike price within a specifi c period of time, 
and simultaneously it sells a call option, which grants the right to the bank to buy the 
same amount of foreign currency within the same period of time. Both options have 
different strikes, but, the same option premiums. The corporation sets a strike price of 
the put option and the bank calculates the strike price of the call option, both option 
premiums being equal.

Option Strategy “Ratio Forward”

The “Ratio Forward” option strategy represents a combination of two basic option 
positions. In this case corporation buys a put option and simultaneously sells a call 
option with different strikes and different amounts of underlying currency.

Thus, the virtual fi rm buys a put option that gives the right to sell €400,000 at 
some point in the future, and sets the strike price that is, for example, CZK 27.700 
per euro. At the same time the fi rm sells a call option, which grants the right to the 
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bank to buy, for instance, €600,000 at some point in the future. The bank calculates 
the strike price of the put option so that the option premiums are the same. Since 
the amount of underlying currency of the put option is smaller than the amount of 
underlying currency of the call option, the strike price of the call option shall be greater 
in comparison with the “Vertical Spread” strategy. 

The corporation may use that strategy if it generally expects a depreciation of 
the domestic currency, but small fl uctuations due to the intervention of central banks 
are possible as well. The strategy provides hedging against the appreciation of the 
domestic currency and simultaneously enables participation in the slight depreciation 
of the domestic currency. If the depreciation is, however, too strong, the revenues will 
start to fall.

4.3.3 Hedging Strategy

The decision of the strategy was made on the basis of predictions offered by neural 
networks and GMDH algorithm. Standard parameters of the instruments that are 
offered by the banks to smaller companies on the Czech market were used in the 
simulation.

In the simulation, forward rates were derived from the covered interest rate 
parity condition including the transaction costs in terms of average spreads for small 
companies on the Czech market. Strike prices of the put options were set about 1% 
below the forward rates, and the option premiums as well as the strike prices of the 
call options within the option strategies were obtained from one of the largest Czech 
commercial banks. Thus, the prices of fi nancial instruments used in the simulation 
refl ected real market prices of these instruments for small companies.

As for the exchange rate forecasting two machine learning methods – the enhanced 
Group Method of Data Handling (GMDH) and the back propagation Neural Network 
were employed. The relevant algorithms were created in MATLAB programming 
environment. 

There were two main reasons for using machine learning methods for exchange 
rate forecasting. Firstly, although machine learning provides highly sophisticated 
non-linear modelling of exchange rate behaviour, fi nancial managers can easily use 
these models on the “black box” principle. Therefore, as soon as an expert creates the 
model, it is relatively easy to use. 

Secondly, the machine learning models provide short-term predictions of time 
series future values. This was very important for our decision-making process 
simulation, because managers of virtual fi rms could use the predictions not only 
as recommendations whether to hedge or not, but they could use the forecasts also 
as instructions on which instrument to use. Thus, the process of hedging was fully 
automated.

The hedging strategy was defi ned as follows:
– If the predicted exchange rate is lower than the forward rate, the virtual fi rm sells 

€400,000 on the forward market.
– If the predicted exchange rate lies between the forward rate and the strike price 

of the call option within the “Vertical Spread” strategy, the virtual fi rm uses the 
“Vertical Spread” strategy. 
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– If the predicted exchange rate lies between the strike price of the call option within 
the “Vertical Spread” strategy and the strike price of the call option within the 
“Ratio Forward” strategy, the virtual fi rm uses the “Ratio Forward” strategy. 

– If the predicted exchange rate is higher than the strike price of the call option 
within the “Ratio Forward”, but lower than this strike price plus two thirds of the 
paid plain vanilla put option premium, including relevant interest1, the virtual fi rm 
stays with the “Ratio Forward” strategy. 

– If the predicted exchange rate is higher than the strike price of the call option 
within the “Ratio Forward,” plus, two thirds of the paid plain vanilla put option 
premium including relevant interest, then, the virtual fi rm buys the plain vanilla 
put option. 

The last rule can be formally derived as follows:

    S – P . (1+i) > X – (S - X) . 0.5, (4)
so that   

1.5 .S  >1.5. X+ P . (1+i),

and fi nally 

  
2

(1 )
3

S X P i   
 (5)

S  … spot exchange rate on the expiry day;
P … put option premium;
X … call option strike price;
i  … reference interest rate on a monthly basis.

4.4  Simulation Analysis Results

In the simulation, the fi nancial managers of the virtual fi rm hedged the receivables of 
€400,000 each month during the years 2005–2006. In total, 24 decisions were made. 
Hedging procedure was quite automatic, because all decisions were made with respect 
to the predefi ned strategy and the relevant exchange rate forecasts were based on 
machine learning models.

Figure 5 illustrates the hedging process. Three different exchange rates are plotted 
in the graph – the ex-ante predicted exchange rate, the real exchange rate and the 
effective exchange rate achieved through the hedging strategy. It is also noticeable 
which instrument was used in each month – forward (F), “Vertical Spread” strategy 
(VS) and “Ratio Forward” strategy (RF).

1  In the Czech Republic the option premiums are usually paid at the beginning of the option 
contracts. Thus, we have to calculate the interest for the period between the forming of the contract 
and the expiry day.  
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Figure 5
Hedging Process

The fi rst moth the predicted exchange rate for the next month was CZK 30.250 per 

euro, 1-month forward rate was CZK 30.656 per euro, strike price of the put option 
was set at CZK 30.312 per euro and strike price of the call option equalled CZK 
30.828 per euro for the “Vertical Spread” strategy and CZK 31.065 per euro for the 
“Ratio Forward” strategy. With respect to the defi ned hedging strategy we decided for 
forward hedge.

In one month, the real exchange rate was CZK 29.960 per euro. Thus, the savings 
from hedging amounted to €27,809, because thanks to the forward we could sell 
€400,000 at the higher rate (CZK 30.656 per euro) etc.

In total, the forward was used ten times. In seven cases, the open position was 
hedged with the “Vertical Spread” strategy. The “Ratio Forward” strategy was applied 
seven times as well. The plain vanilla put option was not used at any time. In comparison 
with no hedging, the revenues of the virtual fi rm were higher by about CZK 939, 896. 
Thus, the hedging process was quiet successful.   

5. Conclusions 

In this study, we presented an enhanced MIA-GMDH-type network, discussed main 
points of its design methodology and carried out experiments of exchange rate 
prediction and implementation of the algorithm in the fi eld of fi nancial hedging. The 
e-GMDH approach presented in this paper is more fl exible than the conventional 
GMDH approach due to specifi c improvements features analyzed in the paper.

It is clear mainly from the results of employing the semi-randomised selection 
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strategy that an effort to improve the selection strategy can bring positive effects into 
GMDH modelling and future research on possible heuristics seems to be promising.

Experiments reported include standard exchange rate prediction task and a real-data 
based simulation analysis in which a simulation of fi nancial fl ow of a internationally 
active medium-sized company based upon real market data was performed. The 
hedging portfolio consisted of fi ve main instruments – forward contract, plain vanilla 
option, the option strategy “Vertical Spread” and the option strategy “Ration Forward” 
while the decision about strategy chosen was made on the basis of ex-ante predictions 
of given algorithm. Comparing with situation when no hedging would be used, the 
revenues of the virtual company were signifi cantly higher.

Enhanced GMDH algorithm outperformed classical GMDH algorithm as well as 
other widely used methods in predicting monthly JPY/USD exchange rate. The results 
of performed simulation analysis show that eGMDH algorithm represents a proper 
tool that can be used as a decision support instrument in the fi nancial management 
process of companies.
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