Prague Economic Papers 2025, 34(4):495-558 | DOI: 10.18267/j.pep.898
Do Machine Learning Techniques Outperform Autoregressive Distributed Lag Models in Inflation Forecasting?
- Bogdan Oancea, Department of Applied Economics and Quantitative Analysis, University of Bucharest, Bd. Regina Elisabeta no. 4-12, Sector 3, 030108 Bucharest, Romania, National Institute of Research and Development for Biological Sciences, Splaiul Independenței 296, 060031 Bucharest, Romania
- Mihaela Simionescu, Department of Applied Economics and Quantitative Analysis, University of Bucharest, Bd. Regina Elisabeta no. 4-12, Sector 3, 030108 Bucharest, Romania, Institute for Economic Forecasting, Romanian Academy, Bucharest, Romania, Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania
- Richard Pospisil (Corresponding author), Tomas Bata University in Zlin, Faculty of Logistics & Crisis Management, Zlin, Czech Republic
Following the COVID-19 pandemic, Romania and other Central and Eastern European (CEE) countries faced some of the highest inflation rates in the European Union, creating a pressing need for accurate short-term forecasts to guide monetary policy. This study compares modern machine learning (ML) methods - Long Short-Term Memory (LSTM) neural networks, Random Forests (RF) and Support Vector Regression (SVR) - with traditional Autoregressive Distributed Lag (ARDL) models in forecasting Harmonised Index of Consumer Prices. Using quarterly data for Romania (2006Q1-2023Q4) and monthly data for nine CEE economies (2006M1-2025M3), we incorporate unemployment and sentiment indicators derived from the Romanian Central Bank reports and the European Commission's Economic Sentiment Indicator (ESI). We further evaluate model performance through simulation experiments that include high persistence, moving-average non-invertibility, nonlinear regimes, and structural breaks. Across both empirical and LSTM and SVR models - they frequently deliver lower forecast errors than ARDL, with LSTM achieving up to 53% reductions in mean squared error relative to naïve benchmarks. However, ARDL remains competitive when sentiment indices are the main predictor. These findings highlight that while advanced ML models can capture nonlinear dynamics and regime changes, traditional econometric tools still provide valuable robustness, particularly in sentiment-driven contexts. Overall, integrating ML, econometric approaches, and sentiment analysis offers a more reliable toolkit for short-horizon inflation forecasting under economic uncertainty.
Keywords: Inflation, Long Short-Term Memory neural networks, Random Forests, Support Vector Regression, Autoregressive Distributed Lag models.
JEL classification: C51, C53, E31
Received: March 20, 2025; Revised: September 11, 2025; Accepted: October 10, 2025; Prepublished online: December 19, 2025; Published: December 22, 2025 Show citation
| ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Abadi, M.; et al. (2016). TensorFlow: A System for Large-Scale Machine Learning. In Proc. 12th USENIX Symp. Oper. Syst. Des. Implement.; pp 265-283. https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
- Ahsan, M. D. Manjurul; Mahmud, M. A. Parvez; Saha, P. K.; Gupta, K. D.; Siddique, Z. (2021). Effect of Data Scaling Methods on Machine Learning Algorithms and Model Performance. Technologies, 9(3), 52. https://doi.org/10.3390/technologies9030052.
Go to original source... - Almosova, A., Andresen, N. (2023). Nonlinear inflation forecasting with recurrent neural networks. J. Forecasting, 42(3), 240-259. https://doi.org/10.1002/for.2901
Go to original source... - Bahdanau, D.; Cho, K.; Bengio, Y. (2015). Neural Machine Translation by Jointly Learning to Align and Translate. In Proc. 3rd Int. Conf. Learn. Representations (ICLR). https://arxiv.org/pdf/1409.0473
- Bańbura, M., Bobeica, E. (2020). Does the Phillips curve help to forecast euro area inflation? ECB Working Paper Series, No 2471. European Central Bank. https://www.ecb.europa.eu/pub/pdf/scpwps/ecb.wp2471~fc87caada8.en.pdf
- Basak, D.; Pal, S.; Patranabis, D. C. (2007). Support Vector Regression. Neural Inf. Process. Lett. Rev., 11(10), 203-224. https://www.researchgate.net/publication/228537532_Support_Vector_Regression
- Beck, E., Wolf, M. (2025). Forecasting Inflation with the Hedged Random Forest. Policy Brief No. 1250, SUERF - The European Money and Finance Forum. https://www.suerf.org/wp-content/uploads/2025/09/SUERF-Policy-Brief-1250-_Beck.Wolf_.pdf
Go to original source... - Benett, J., Owyang, M. (2022). On the Relative Performance of Inflation Forecasts. Federal Reserve Bank of St. Louis. Staff Rep. No. 214/2022. https://doi.org/10.20955/r.104.131-48
Go to original source... - Boaretto, G., Medeiros, M. C. (2023). Forecasting inflation using disaggregates and machine learning, arXiv preprint arXiv:2308.11173. https://doi.org/10.48550/arXiv.2308.11173.
Go to original source... - Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
Go to original source... - Biau, G., Scornet, E. (2016). Random Forest Guided Tour. TEST, 25, 197-227. https://doi.org/10.1007/s11749-016-0481-725 (2).
Go to original source... - Chalmovianský, J., Porqueddu, M., Sokol, A. (2020). Weigh(t)ing the basket: aggregate and component-based inflation forecasts for the euro area. ECB Working Paper Series, No 2501, European Central Bank. https://www.ecb.europa.eu/pub/pdf/scpwps/ecb.wp2501~8797484f4b.en.pdf
- Chollet, F. (2015). Keras: The Python Deep Learning Library. [Retrieved 2024-10-01]Available at: https://keras.io.
- Cissoko, M. B. H., Castelain, V., Lachiche, N. (2025). Multi-Way Adaptive Time Aware LSTM for Irregularly Collected Sequential ICU Data. Expert Syst. Appl. 261, 125548. https://doi.org/10.1016/j.eswa.2024.125548.
Go to original source... - Clements, M.P., Reade, J.J., 2020. Forecasting and forecast narratives: The Bank of England inflation reports. International Journal of Forecasting, 36(4), 1488-1500. https://doi.org/10.1016/j.ijforecast.2019.08.013
Go to original source... - Cutler, D. R.; Edwards, T. C., Jr.; Beard, K. H.; Cutler, A.; Hess, K. T.; Gibson, J.; Lawler, J. J. (2007). Random Forests for Classification in Ecology. Ecology, 88(11), 2783-2792.
Go to original source... - https://doi.org/10.1890/07-0539.1
Go to original source... - Dang, P. N., Dang, T. V. D., Nguyen, T. M. T., Vu, Q. K., Nguyen, A. H. (2025). Sentiment index as a predictor of CPI: A lexicon-based approach using economic news data in Vietnam. Journal of Open Innovation: Technology, Market, and Complexity, 11(3), 100620. https://doi.org/10.1016/j.joitmc.2025.100620.
Go to original source... - Drucker, H.; Burges, C. J. C.; Kaufman, L.; Smola, A.; Vapnik, V. (1997). Support Vector Regression Machines. In Adv. Neural Inf. Process. Syst., 9, 155-161. https://proceedings.neurips.cc/paper_files/paper/1996/file/d38901788c533e8286cb6400b40b386d-Paper.pdf
- Eugster, P., Uhl, M. (2024). Forecasting Inflation Using Sentiment. Economics Letters. Vol. 236(3), 111575. https://doi.org/10.1016/j.econlet.2024.111575
Go to original source... - Faust, J., Wright, J. (2013). Forecasting Inflation. Handbook of Economic Forecasting. 1(2), p. 2-56. https://doi.org/10.1016/B978-0-444-53683-9.00001-3
Go to original source... - Fulton, Ch., Hubrich, K. (2021). Forecasting Real Inflation in Real Time. Econometrics. 9 (4), 36. https://doi.org/10.3390/econometrics9040036
Go to original source... - Gers, F. A., Schmidhuber, J., Cummins, F. (2000). Learning to Forget: Continual Prediction with LSTM. Neural Comput. 12(10), 2451-2471. https://doi.org/10.1162/089976600300015015.
Go to original source... - Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H., Schmidhuber, J. (2009). A Novel Connectionist System for Unconstrained Handwriting Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(5), 855-868. https://doi.org/10.1109/TPAMI.2008.137.
Go to original source... - Groen, J., Paap, R., Ravazzolo, F. (2012). Real Time Inflation Forecasting in Changing World. Federal Reserve Bank of New York. Staff Rep. No. 388. https://resources.newyorkfed.org/medialibrary/media/research/staff_reports/sr388.pdf
Go to original source... - Grothe M., Meyler, A. (2015). Inflation Forecasts: Are Marked Based and Survey Based Measures Informative? ECB: Working Paper Series. 1865(11). https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp1865.en.pdf
- Han, J., Kamber, M., Pei, J. (2011). Data Mining: Concepts and Techniques, 3rd ed.; Morgan Kaufmann: Burlington, MA.
- Hochreiter, S., Schmidhuber, J. (1997). Long Short-Term Memory. Neural Comput. 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
Go to original source... - Hong, Y., Jiang, F., Meng, L., Xue, B. (2024). Forecasting Inflation Using Economic Narratives. Journal of Business and Economic Statistics. 43(1), 216-231. https://doi.org/10.1080/07350015.2024.2347619
Go to original source... - Hoque, K. E., Aljamaan, H. (2021). Impact of Hyperparameter Tuning on Machine Learning Models in Stock Price Forecasting. IEEE Access, 9, 163815-163830. https://doi.org/10.1109/ACCESS.2021.3134138.
Go to original source... - Hyndman, R. J., Koehler, A. B. (2006). Another Look at Measures of Forecast Accuracy. Int. J. Forecast. 22(4), 679-688. https://doi.org/10.1016/j.ijforecast.2006.03.001
Go to original source... - Hyndman, R. J., Athanasopoulos, G. (2018). Forecasting: Principles and Practice; OTexts.
- Ito, K.; Nakano, R. (2003). Optimizing Support Vector Regression Hyperparameters Based on Cross-Validation. In Proc. Int. Joint Conf. Neural Networks; Portland, OR, USA, Vol. 3, pp 2077-2082. https://doi.org/10.1109/IJCNN.2003.1223728.
Go to original source... - James, G., Witten, D., Hastie, T.; Tibshirani, R. (2013). An Introduction to Statistical Learning; Springer Science & Business Media: New York.
Go to original source... - Kumuda, A., Panigrahy, S. K. (2025). Design of an Efficient Model for Psychological Disease Analysis and Prediction Using Machine Learning and Genomic Data Samples. Big Data Cogn. Comput. 9(3), 49. https://doi.org/10.3390/bdcc9030049.
Go to original source... - Lenza, M., Moutachaker, I., Paredes, J. (2023). Density forecasts of inflation: A quantile regression forest approach. ECB Working Paper No. 2830. European Central Bank. https://www.ecb.europa.eu/pub/pdf/scpwps/ecb.wp2830~81049ee58f.en.pdf
Go to original source... - Lin, E., Kuo, P.-H., Lin, W.-Y., Liu, Y.-L., Yang, A. C.; Tsai, S. J. (2021). Prediction of Probable Major Depressive Disorder in the Taiwan Biobank: An Integrated Machine Learning and Genome-Wide Analysis Approach. J. Pers. Med. 11(7), 597. https://doi.org/10.3390/jpm11070597.
Go to original source... - Liu, Y., Pan, R., Xu, R. (2024). Mending the Crystal Ball: Enhanced Inflation Forecasts with Machine Learning. International Monetary Fund. WP/24/206, (9).
Go to original source... - https://doi.org/10.5089/9798400285387.001
Go to original source... - Medeiros, M., Vasconcelos, G., Veiga, A., Zilberman, E. (2021). Forecasting Inflation in a Data Rich Environment: The Benefits of Machine Learning Methods. Journal of Business & Economic Statistics, 39(1), 98-119. https://doi.org/10.1080/07350015.2019.1637745
Go to original source... - Mienye, I. D., Swart, T. G.; Obaido, G. (2024). Recurrent Neural Networks: A Comprehensive Review of Architectures, Variants, and Applications. Information 15(9), 517. https://doi.org/10.3390/info15090517.
Go to original source... - Ngwaba, C. A. (2025). Forecasting Covered Call Exchange-Traded Funds (ETFs) Using Time Series, Machine Learning, and Deep Learning Models. J. Risk Financ. Manag. 18(3), 120. https://doi.org/10.3390/jrfm18030120.
Go to original source... - Nitesh, K., Abhiram, Y., Teja, R. K., Kavitha, S. (2023). Weather Prediction Using Long Short Term Memory (LSTM) Model. In Proc. 2023 5th Int. Conf. Smart Syst. Invent. Technol. (ICSSIT); Tirunelveli, India, pp 1-6. https://doi.org/10.1109/ICSSIT55814.2023.10061039.
Go to original source... - Panzaru, C., Belea, S., & Jianu, L. (2025). Delayed Taxation and Macroeconomic Stability: A Dynamic IS-LM Model with Memory Effects. Economies, 13(7), 208. https://doi.org/10.3390/economies13070208.
Go to original source... - Paranhos, L. (2025). Predicting inflation with recurrent neural networks. Intl. J. of Economic Forecasting, in press. https://doi.org/10.1016/j.ijforecast.2024.07.010.
Go to original source... - Park, S., Yang, J. S. (2022). Interpretable Deep Learning LSTM Model for Intelligent Economic Decision-Making. Knowledge-Based Systems, 248, 108907. https://doi.org/10.1016/j.knosys.2022.108907.
Go to original source... - Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E. (2011). Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 2825-2830.
- https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdfPetropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z., Barrow, D. K., Taieb, S. B., Ziel, F. (2022). Forecasting: Theory and Practice. Int. J. Forecast. 38(3), 705-871. https://doi.org/10.1016/j.ijforecast.2021.11.001
Go to original source... - Raza, A., Shahid, M. A., Zaman, M., Miao, Y., Huang, Y., Safdar, M., Maqbool, S., Muhammad, N. E. (2025). Improving Wheat Yield Prediction with Multi-Source Remote Sensing Data and Machine Learning in Arid Regions. Remote Sensing 17(5), 774. https://doi.org/10.3390/rs17050774.
Go to original source... - Rygh, T., Vaage, C., Westgaard, S., de Lange, P. E. (2025). Inflation Forecasting: LSTM Networks vs. Traditional Models for Accurate Predictions. J. Risk Financial Manag., 18(7), 365. https://doi.org/10.3390/jrfm18070365
Go to original source... - Saâdaoui, F., Rabbouch, H. (2024). Financial Forecasting Improvement with LSTM-ARFIMA Hybrid Models and Non-Gaussian Distributions. Technol. Forecast. Soc. Change, 206, 123539. https://doi.org/10.1016/j.techfore.2024.123539.
Go to original source... - Salton, G. D.; Kelleher, J. D. (2019). Persistence Pays Off: Paying Attention to What the LSTM Gating Mechanism Persists. In Proc. Recent Adv. Nat. Lang. Process. (RANLP 2019); Varna, Bulgaria, pp 1052-1059. https://doi.org/10.26615/978-954-452-056-4_121.
Go to original source... - Sevgin, F. (2025). Machine Learning-Based Temperature Forecasting for Sustainable Climate Change Adaptation and Mitigation. Sustainability, 17(5), 1812. https://doi.org/10.3390/su17051812.
Go to original source... - Smola, A. J.; Schölkopf, B. (2004). A Tutorial on Support Vector Regression. Stat. Comput.,14, 199-222. https://doi.org/10.1023/B:STCO.0000035301.49549.88.
Go to original source... - Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res., 15(1), 1929-1958. http://jmlr.org/papers/v15/srivastava14a.html
- Stock, J., M. Watson. (1999). Forecasting Inflation. Journal of Monetary Economics. 44(2), p. 293-335. https://doi.org/10.1016/S0304-3932(99)00027-6
Go to original source... - Stock, J., M. Watson. (2003). Forecasting Output and Inflation: the Role of Assets Prices. Journal of Economic Literature. 41(3), p. 788-829. https://www.aeaweb.org/articles/pdf/doi/10.1257/002205103322436197
Go to original source... - Strobl, C., Boulesteix, A. L., Zeileis, A., Hothorn, T. (2009). Bias in Random Forest Variable Importance Measures: Illustrations, Sources and a Solution. BMC Bioinformatics, 10 (1), 213. https://doi.org/10.1186/1471-2105-8-25
Go to original source... - Sutskever, I., Vinyals, O., Le, Q. V. (2014). Sequence to Sequence Learning with Neural Networks. In Proc. 27th Int. Conf. Neural Inf. Process. Syst.; MIT Press, pp. 3104-3112. https://proceedings.neurips.cc/paper_files/paper/2014/file/5a18e133cbf9f257297f410bb7eca942-Paper.pdf
- Svoboda, J., Štych, P., Laštovička, J., Paluba, D., Kobliuk, N. (2022). Random Forest Classification of Land Use, Land-Use Change and Forestry (LULUCF) Using Sentinel-2 Data-A Case Study of Czechia. Remote Sensing, 14(5), 1189. https://doi.org/10.3390/rs14051189.
Go to original source... - Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J.; Wojna, Z. (2016). Rethinking the Inception Architecture for Computer Vision. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 2818-2826. https://doi.org/ 10.1109/CVPR.2016.308.
Go to original source... - Vapnik, V. (1995). The Nature of Statistical Learning Theory; Springer: New York.
Go to original source... - Vicente, J. (2005). Forecasting inflation through a bottom-up approach: The Portuguese case. Banco de Portugal Working Paper No. 5-05. https://www.bportugal.pt/sites/default/files/anexos/papers/wp200502.pdf
- Wang, H., Liu, M. (2025). Credit Risk Assessment of Green Supply Chain Finance for SMEs Based on Multi-Source Information Fusion. Sustainability, 17(4), 1590. https://doi.org/10.3390/su17041590.
Go to original source... - Zaremba, W., Sutskever, I., Vinyals, O. (2014). Recurrent Neural Network Regularization. In Proc. 2014 Conf. Empir. Methods Nat. Lang. Process. (EMNLP); Association for Computational Linguistics, pp 1524-1534. https://doi.org/10.48550/arXiv.1409.2329
Go to original source... - Zhang, L., Li, J. (2012). Inflation Forecasting Using Support Vector Regression, Fourth International Symposium on Information Science and Engineering, Shanghai, China, 2012, pp. 136-140. https://doi.org/ 10.1109/ISISE.2012.37
Go to original source... - Zhou, J.; Li, C.; Kim, Y. K.; Park, S. (2025). Bioinformatics and Deep Learning Approach to Discover Food-Derived Active Ingredients for Alzheimer's Disease Therapy. Foods, 14(1), 127. https://doi.org/10.3390/foods14010127.
Go to original source... - Zhu, P. Zhou, O., Zhang, Y. (2024). Investor Attention and Consumer Price Index Inflation rate: an Evidence from the United States. Human and Social Studies Communications, 11 (541). https://doi.org/10.1057/s41599-024-03036-y
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.

ORCID...