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Abstract:

Following the COVID-19 pandemic, Romania and other Central and Eastern European (CEE)
countries faced some of the highest inflation rates in the European Union, creating a pressing
need for accurate short-term forecasts to guide monetary policy. This study compares mod-
ern machine learning (ML) methods - Long Short-Term Memory (LSTM) neural networks,
Random Forests (RF) and Support Vector Regression (SVR) - with traditional Autoregressive
Distributed Lag (ARDL) models in forecasting Harmonised Index of Consumer Prices. Us-
ing quarterly data for Romania (2006Q1-2023Q4) and monthly data for nine CEE economies
(2006M1-2025M3), we incorporate unemployment and sentiment indicators derived from
the Romanian Central Bank reports and the European Commission’s Economic Sentiment
Indicator (ESI). We further evaluate model performance through simulation experiments that
include high persistence, moving-average non-invertibility, nonlinear regimes, and structural
breaks. Across both empirical and LSTM and SVR models - they frequently deliver lower
forecast errors than ARDL, with LSTM achieving up to 53% reductions in mean squared error
relative to naive benchmarks. However, ARDL remains competitive when sentiment indices
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are the main predictor. These findings highlight that while advanced ML models can capture
nonlinear dynamics and regime changes, traditional econometric tools still provide valuable
robustness, particularly in sentiment-driven contexts. Overall, integrating ML, econometric ap-
proaches, and sentiment analysis offers a more reliable toolkit for short-horizon inflation fore-

casting under economic uncertainty.

Keywords: Inflation, Long Short-Term Memory neural networks, Random Forests, Support
Vector Regression, Autoregressive Distributed Lag models.
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1. Introduction

This paper investigates whether modern machine-learning (ML) methods, specifically Long
Short-Term Memory neural networks (LSTM), Random Forests (RF), and Support Vector Re-
gression (SVR), can produce more accurate short-term inflation forecasts than traditional Au-
toregressive Distributed Lag (ARDL) models, especially during periods of high volatility and
policy uncertainty. Focusing on Romania and the Central and Eastern European (CEE) econ-
omies after the COVID-19 pandemic, we developed and compared forecasting models that
incorporate macroeconomic variables such as Harmonised Indices of Consumer Prices (HICP)
as a proxy for inflation and unemployment, along with sentiment indicators derived from cen-
tral-bank reports and the European Commission’s Economic Sentiment Indicator (ESI). Our
results highlight the situations in which each approach performs best, provide practical advice
for policymakers on model choice, and emphasize the importance of combining traditional

econometrics with advanced ML tools to improve real-time policy decisions.

Inflation in Romania has been a major concern in 2023, reaching double-digit levels due
to rising energy and food prices, supply chain disruptions caused by the pandemic, and in-
creased government spending. In the first quarter of 2024, Romania recorded the highest infla-
tion in the EU at 6.7% in March 2024. This economic situation underscores the need for accu-
rate forecasts. Recent macro models for Romania show that fiscal transmission is delayed and
history-dependent, with “memory” in income dynamics affecting short-run adjustment paths.
This strengthens the case for short-horizon inflation forecasts that accommodate distributed

lags and nonlinearity (Panzaru, Belea, and Jianu, 2025).

Inflation forecasting is crucial for policymakers, economists, and financial advisors. Ac-
curate predictions of inflation can greatly influence monetary policy and economic decisions.
When forecasting economic time series data, choosing the best algorithmic approach is essen-

tial for obtaining accurate predictions and strong performance. Two common methodologies
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in this field are traditional econometric methods like autoregressive integrated moving average
(ARIMA) models and machine learning (ML) techniques.

Econometric techniques have been widely used in analyzing and forecasting time series
data because they effectively capture time and seasonal patterns. Additionally, ML techniques
provide a more adaptable framework for representing interconnected dynamics and nonlinear
relationships in sequential data. The choice between these models depends on various factors,
such as the features of the time series, the complexity of the temporal patterns, and the primary
goals of the forecasting task. While econometric methods often assume certain conditions like
stationarity, machine learning models do not offer greater flexibility in explaining connected

dynamics and nonlinear relationships in series.

This research assesses the effectiveness of three machine learning techniques - RF, LSTM,
and SVR - for predicting HICP during 2023Q1 to 2023Q4, based on historical data from 2006
to 2022 for Romania. The results are compared with traditional econometric methods, specif-
ically autoregressive distributed lag models (ARDL), which address endogeneity issues relat-
ed to the connection between inflation and unemployment in Romania. Romania was select-
ed because it experienced one of the highest rates of inflation in the European Union during
the post-pandemic period. Additionally, to evaluate the broader applicability of the findings,
the analysis was extended to all CEE countries using monthly seasonally adjusted data from
2006M1 to 2024M12, with a forecast horizon of three months: 2025M1 to 2025M3. The core
research question examines whether machine learning methods can outperform econometric
models in short-term inflation forecasting within an economically vulnerable context, char-
acterized by high. Inflation is modeled based on unemployment rates and a sentiment index
derived from the National Bank’s quarterly reports for Romania and the ESI for other CEE
countries. While the interest rate might better explain inflation since central banks use it to con-
trol prices, it is not included here because the National Bank of Romania promotes a self-reg-
ulating market and typically maintains stable interest rates, with only significant adjustments

in extreme situations.

On the other hand, according to the Phillips curve theory, there is an indirect relation-
ship between inflation and unemployment. When unemployment rates are low, inflation tends
to be high. The theory suggests that in a strong economy with low unemployment, workers
have more purchasing power and can demand higher wages. This can lead to increased prices,
which result in inflation. This describes the current situation of the Romanian economy. Ahead
of the 2024/2025 elections, the government has announced a salary increase, including an in-

crease in the minimum wage. Additionally, recent employee protests driven by social tensions
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in recent years have put pressure on the labor market and linked it more closely with inflation.

The novelty of this study lies in constructing the most appropriate models and identifying
the best forecasting method for a short-term horizon characterized by high inflation and for

a country that gradually increased interest rates to address the phenomenon.

Additionally, this study investigates the ability of sentiment techniques based on natu-
ral language processing (NLP) to analyze large volumes of text provided by official experts
for improving inflation forecasts within specific spatial and temporal frameworks. Economic
sentiment, which reflects the overall mood of the economy and future expectations, is a key
indicator in macroeconomics. It is relevant across various sectors - such as trade, services, and
industry - as well as for managers and investors in financial markets, including commodities
and stocks. In mainstream economic thought, the aggregate confidence indicator, often called
the Economic Sentiment Indicator (ESI) or Basic Index, combines both business and consumer

confidence into a single measure.

The sentiment analysis remains an underexplored research area with real potential to en-
hance prediction accuracy (Dang et al., 2025; Eugster and Uhl, 2024), and the use of NLP falls
under the category of modern artificial intelligence techniques. Additionally, this pioneering
research conducted in Romania uses complex machine learning techniques to forecast inflation
over short-term horizons and during periods of high inflation that could not last long due to cen-

tral bank interventions.

The inflationary period affecting all developed countries after the Covid-19 pandemic,
especially many EU economies, calls for new and advanced methods of inflation forecasting.
Achieving a high level of price stability is the main goal of central banks (Stock and Watson,
1999). As a result, inflation forecasting is a key starting point for inflation targeting in cen-
tral bank monetary policy. Besides central banks, commercial banks also forecast inflation
to estimate the prices of their resources and assets in the short and medium term (Hong et al.,
2024). Additionally, inflation forecasting interests’ academia and supranational institutions such
as the International Monetary Fund, the World Bank, and others. Nominal output data and fore-
cast comments are primary sources for rational decision-making by consumers, households,

and companies (Liu et al., 2024).

Most studies and sources on inflation forecasting primarily predict inflation trends in iso-
lation without thoroughly examining the interrelationships among economic variables. Many
forecasts also focus on longer economic cycles that could be significantly influenced by com-
mon monetary and fiscal policy tools. Additionally, non-economic factors such as pandemics,

international events, wars, and others are increasingly recognized as important (Groen et al.,
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2012). This complexity makes inflation forecasting more challenging and requires reliance
on shorter observation periods (Fulton and Hubrich, 2021). Furthermore, the results and recom-
mendations from inflation forecasts tend to have shorter time horizons and lower informational
value (Eugster and Uhl, 2024).

A correct estimate of the future inflation rate is extremely important, even dominant, for
the economy. The inflation rate is directly related to the level of short-term interest rates, and
thus directly affects the prices of assets, deposits, mortgages, debts, and more (Grothe and
Meyer, 2015). Broadly speaking, it influences the country’s economic performance, economic

growth, tax collection, and the real value of wages and pensions.

Most of the current inflation forecasting models are well documented in many papers
(Stock and Watson, 2003; Zhu et al., 2024), but they are not very suitable for today’s economic
reality, which is burdened with high uncertainty. The research gap involves developing inflation
forecasting methods using ML models, comparing their performances, and creating a meth-
od that achieves the highest possible accuracy (Medeiros et al., 2021). The presence of high
inflation rates across all advanced economies highlights the need for a new approach to infla-
tion forecasting, one that incorporates models considering various economic and potential new

non-economic indicators (Benett and Owyang, 2022; Faust and Wright, 2013).

The paper follows the traditional structure by including a literature review, methodology,

empirical results, and conclusions. All these sections contribute to the novelty of this research.

2. Literature review

In the era of inflation targeting since the 1990s, short-term inflation forecasts have become a vi-
tal input for central banks and economic policy (Rygh, 2025). This is especially true in Europe,
where price stability is formally defined in terms of the Harmonised Index of Consumer Prices
(HICP) and where continuously monitoring and predicting inflation is deemed “indispensa-
ble” for monetary strategy (Vicente, 2005). A rich literature has accordingly developed a range
of forecasting approaches - from simple time-series extrapolations to structural economic mod-
els - to anticipate near-term inflation dynamics. These approaches and findings in Europe are
often compared with those from other regions to distil general insights into inflation forecast

performance.

Conventional econometric methods have long underpinned short-term inflation forecast-
ing. Univariate time-series models like ARIMA (and seasonal ARIMA) often provide robust
benchmarks, sometimes matching or outperforming more complex specifications (Rygh, 2025).

Multivariate models, such as Vector Autoregressions (VARSs) that incorporate broader econom-
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ic information, and structural Phillips curve models linking inflation to measures of slack (un-
employment or output gaps), have been extensively applied. However, many studies find that
these elaborate models do not consistently outperform simpler ones out of sample. For exam-
ple, traditional Phillips-curve forecasts frequently failed to beat naive predictions based on past
inflation. More broadly, decades of research have documented the challenge of improving upon
basic extrapolative benchmarks (random walks or autoregressive trends) in forecasting infla-
tion (Beck and Wolf, 2025). This has motivated ongoing refinements of classical models (e.g.

Bayesian VARs or factor models) as researchers seek incremental gains in predictive accuracy.

Short-term inflation forecasting in Europe - typically expressed in terms of HICP remains
challenging, with simple extrapolative benchmarks often difficult to beat. A comprehensive
ECB assessment of Phillips-curve specifications from 1994 to 2018 finds that while some vari-
ants do outperform a univariate benchmark at times, gains are modest, and model performance
is episodic. Allowing for a time-varying inflation trend and carefully chosen slack measures
helps, whereas adding external drivers generally does not improve out-of-sample accuracy.
These results underscore why forecasters combine tools and emphasize short horizons (3—12

months) where policy relevance is highest (Banbura and Bobeica, 2020).

Within traditional econometric approaches, a key European question is whether to fore-
cast aggregate HICP directly or to model and aggregate components. Recent ECB work com-
paring direct (“‘aggregate’) versus bottom-up (component) models reveal small average dif-
ferences overall, but notable short-horizon episodes where disaggregation proves beneficial.
For example, at h = Imonth, relative RMSEs (component vs. aggregate; values < 1 favour
component) were 0.53 for Italy and 0.38 for the Netherlands (i.e., component better), while by
h =12 months, relative RMSEs were near unity across the big five economies (e.g., 0.94-1.01).
Density (probabilistic) scores often favour the aggregate route at most horizons, with statisti-

cally significant but small gains (Chalmoviansky et al., 2020).

The past decade has seen growing interest in ML methods for inflation forecasting, both
in Europe and internationally. Techniques such as SVR (Zhang and Li, 2012), tree-based en-
sembles (random forests and boosting), and deep neural networks (especially LSTMs) have
been applied to capture potential non-linearities and complex data patterns that traditional mod-
els might miss (Beck and Wolf, 2025). In some cases, ML models have delivered improved
accuracy: for example, studies using data-rich environments report that ensemble methods like
random forests can outperform standard autoregressive or random-walk benchmarks in predict-
ing inflation. Nevertheless, the evidence is mixed. Advanced ML approaches do not consist-

ently dominate well-tuned econometric models, especially at short horizons. Recent research
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finds that LSTM-based forecasts for both U.S. CPI and euro-area inflation achieved accuracy
roughly comparable to simpler models (such as SARIMA or regularized regressions), offering
at best marginal gains (Almosov and Andresen, 2023). Similarly, while SVR has shown prom-
ise in specific instances (outperforming neural networks or OLS in one CPI forecasting study),
its advantages have not proven universal. Given the tendency of complex ML models to overfit
and their relative lack of transparency, a notable trend is the rise of hybrid approaches - com-
bining machine learning with traditional techniques. For example, researchers have explored
blending LSTM networks with feature selection or linear components and using regularized re-
gression (like LASSO) alongside non-linear learners, to improve interpretability and robustness
(Rygh, 2025; Paranhos, 2025).

ML methods have also been incorporated recently into the European toolbox. An ECB
Quantile Regression Forest (QRF) built on 60 Phillips-curve-inspired predictors delivered
point-forecast RMSEs for euro-area headline/core inflation that are broadly comparable to insti-
tutional benchmarks at short horizons: for headline, RMSEs were 0.58 (QRF) vs. 0.47 (BMPE)
at h =3, 0.92 vs. 0.94 at h = 6; for core, 0.21 vs. 0.22 at h = 3, 0.36 vs. 0.38 at h = 6. Over
the sample, the QRF tended to perform better for core than headline and showed competitive
density forecasts against both linear BVAR combinations and survey densities. These results
suggest non-linear methods can match state-of-the-art linear systems for short-run HICP fore-

casts, especially for core (Lenza et al., 2023).

The factors influencing short-term performance in Europe align with macroeconomic
theory and practice. In the QRF, SHAP analysis emphasizes short-term interest rates (Euri-
bor 3-month), survey-based price expectations (consumer and industry), unemployment, gov-
ernment bond yields, building permits (as a measure of real activity), producer price indices,
and negotiated wages as the top contributors at six-month horizons. In Phillips-curve models,
time-varying inflation trends, filter-based output gaps, and various measures of labor market
slack are important; meanwhile, adding external variables (such as terms of trade and com-
modity prices) did not consistently improve forecast accuracy in euro-area studies, likely due

to their poor forecastability (Lenza et al., 2023).

Comparative evidence beyond Europe shows similar trends. In the United States, data-rich
ML models, especially RF, often reduce RMSE compared to random-walk/AR benchmarks
across different horizons, supporting their use alongside traditional models. Recent research
on “hedged random forests” reports RMSE and MAE ratios below 1 compared to standard
forests across multiple inflation measures and horizons, with many Diebold—Mariano tests in-

dicating significant improvements. Studies using disaggregated data in emerging markets like
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Brazil show RMSE reductions of approximately 20-27% at several horizons. These findings,
along with European results, suggest that while linear models are still effective, ML methods
that can identify mild non-linearities and interactions improve short-term HICP/CPI forecasts
- especially for core inflation (Medeiros et al., 2021; Beck and Wolf, 2025; Boaretto and Me-
deiros, 2023).

In summary, while most studies used econometric models to predict inflation, including
popular examples like random walk, Dynamic Stochastic General Equilibrium (DSGE) mod-
els, various extensions of Vector Autoregressions (VAR), and other econometric model types
(Petropoulos et al., 2022), only a few recent papers have explored modern forecasting methods
such as ML techniques. As expected, these new methods aim to improve forecasting by focus-
ing on accuracy as the main measure of forecast performance. However, the potential of ML
methods to yield more accurate predictions than traditional econometric models remain prom-
ising, and empirical evaluation is needed to verify this. Therefore, in this section, we introduce
the ML techniques used in the study: RF, LSTM, and SVR.

RF is a supervised ensemble learning method that constructs multiple decision trees and
combines their predictions (Breiman, 2001). They are known for their robustness and strong
performance in both classification and regression tasks. This algorithm trains numerous deci-
sion trees and then merges their predictions to make a final decision. This approach enhances

predictive accuracy and helps prevent overfitting.

Each decision tree is created using a random subset of the training data and a random
subset of features, which helps reduce overfitting and improve generalization. The final predic-
tion is made by a majority vote (for classification) or by averaging (for regression) the outputs
of the individual trees.

The ability of RF to handle nonlinear relationships and noisy inputs makes it particularly
suitable for a wide range of real-world applications, including economics, finance, bioinfor-
matics, and remote sensing (Svoboda et al., 2022; Wang and Liu, 2025; Zhou et al., 2025;
Raza et al., 2025). The algorithm’s parallelizability and scalability enable efficient computation
on large datasets, making it feasible for applications even in domains with extensive data re-
sources, such as genomics and climate modeling (Cutler et al., 2007; Strobil et al., 2009; Kumu-
da and Panigrahy, 2025; Sevgin, 2025). However, RF is not immune to certain weaknesses and
considerations. While RF generally delivers competitive performance across a range of tasks,
its predictive accuracy may plateau or diminish on extremely imbalanced datasets or those
characterized by highly correlated features. Careful tuning of hyperparameters (number of trees
and maximum tree depth) is crucial to maximize model performance and prevent overfitting
(Cutler et al., 2007; Biau and Scornet, 2016).
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SVR extends the principles of Support Vector Machines to regression problems, aiming
to find a function that approximates the data within a certain margin while keeping the model
simple (Drucker et al., 1997). Unlike traditional regression methods that minimize prediction
errors directly, SVR focuses on minimizing deviations outside a specified margin, called the ep-
silon-insensitive tube. This margin defines a range where prediction errors are acceptable, and
deviations beyond them are penalized proportionally to their size. SVR achieves this by map-
ping input data into a higher-dimensional space using a kernel function and considering a hy-
perplane that maximizes the margin while minimizing errors. By adding a regularization term
to the objective function, SVR balances maximizing margin width and minimizing prediction
errors, resulting in a robust and generalizable regression model (Drucker et al., 1997; Smola
and Scholkopf, 2004).

A key feature of SVR is its ability to handle non-linear relationships between input vari-
ables and target outputs through the use of kernel functions. By implicitly mapping data into
a higher-dimensional feature space, SVR can identify more complex patterns and relationships
that may be hidden in the original input space. This flexibility allows SVR to perform well
across various regression tasks, including time series forecasting, financial modeling, and bio-
informatics (Ngwaba, 2025; Lin et al., 2021). Additionally, SVR’s principle of structural risk
minimization, which focuses on maximizing the margin while controlling model complexity,
helps reduce the risk of overfitting and improves its ability to generalize to new data (Smola and
Scholkopf, 2004; Vapnik, 1995).

Despite its versatility and effectiveness, SVR also has some limitations. The choice
of a specific kernel function and its associated parameters can influence SVR’s performance,
requiring careful tuning to achieve the best results. Additionally, the computational cost of SVR
increases with both the size of the training dataset and the dimensionality of the feature space,
often making it less suitable for large-scale problems compared to simpler regression methods.
Furthermore, the interpretability of SVR predictions can be difficult in high-dimensional spac-
es, which limits its use in applications where clear model insights are essential. Nonetheless,
with proper parameter selection and regularization, SVR remains a valuable tool for regression
tasks that need robustness to non-linearities and flexibility in model representation (Smola and
Scholkpopf, 2004; Ito and Nakano, 2003; Basak et al., 2007).

LSTM networks, a type of recurrent neural networks (RNNs) specifically designed to ad-
dress the vanishing gradient problem and to handle long-range connections in sequential data,
have become important tools for time series prediction tasks (Hochreiter and Schmidhuber,

1997). By leveraging their ability to incorporate long-range links and manage sequential data,
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LSTM-based methods have achieved significant success across various fields, including eco-
nomics, finance, healthcare, and climate forecasting (Park and Yang, 2022; Saadauui and Rab-
bouch, 2024; Cissoko et al., 2025; Nitesh et al., 2023).

Basic RNNs have difficulty learning from long sequences because of vanishing gradients.
In contrast, LSTMs use a more sophisticated gating system that allows them to selectively add
or remove information based on input signals. This system, which includes input, forget, and
output gates, helps LSTMs learn and hold onto long-term dependencies while reducing the im-

pact of vanishing gradients (Hochreiter and Schnidhuber, 1997; Graves et al., 2009).

At the core of LSTM networks are memory cells that act as information carriers, equipped
with self-loop connections to support the circulation of information over time. Each memory
cell maintains a cell state, functioning like a conveyor belt along the sequence, and is controlled
by three types of gates: the input, forget, and output gates. The input gate regulates the flow
of new information into the cell state; the forget gate decides whether to retain or discard ex-
isting information; and the output gate filters the information passed to the next step or output
layer. By combining these gates with non-linear activation functions, LSTMs can preserve and
transmit important information across long sequences, enabling the learning of complex tem-

poral patterns and relationships (Graves et al., 2009; Gers et al., 2000).

The main advantage of LSTMs is their ability to model and predict sequences with vari-
able lengths and temporal dynamics. Unlike traditional fixed-length window methods, which
require predefined segment sizes and often struggle with capturing long-range dependencies,
LSTMs can dynamically adjust their memory cells to handle sequence tasks such as speech
recognition, where utterance durations vary, and natural language processing, where sentence
structures and lengths differ. Additionally, LSTMs can incorporate contextual information and
semantic relationships within sequences, leading to coherent and relevant predictions in appli-
cations like language translation, sentiment analysis, and time series forecasting (Sutskever and
Vinyals, 2014; Bahdanau et al., 2015).

LSTMs also face limitations and challenges. Training LSTM networks requires many cal-
culations, especially for large-scale data sets and complex architectures with many parameters.
Additionally, LSTMs may encounter overfitting, particularly with small data sets or when noisy
inputs are present. Overfitting can be mitigated through dropout and weight decay, which en-
hance generalization. However, with careful design of architecture, regularization, and training,
LSTMs remain a versatile and strong tool for modeling sequential data and capturing complex
temporal connections in various tasks (Salton and Kelleher, 2019; Mienye et al., 2024; Srivas-
tava et al., 2014; Zaremba et al., 2014).
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All three methods are used to produce short-term inflation forecasts for Romania and other
CEE countries, and these predictions are compared to those from ARDL models. The findings

could guide future forecasts in similar economic settings.
Specifically, we intended to check the following hypotheses:

HI1. (Short Horizon): ML models with macro covariates (unemployment rate, sentiment index/
ESI) reduce RMSE/MAPE compared to ARDL baselines for HICP short-horizon forecasts
(1-3 steps).

H2. (Sentiment-only): When sentiment is the sole extra covariate, ARDL remains competitive
with ML.

H3. (Data-generating conditions): Under MA non-invertibility or regime shifts, ML methods
(LSTM and/or SVR) show larger gains.

3. Materials and Methods

A short description of the datasets and methods is given below.

The quarterly data used for Romania cover the period 2006Q1-2023Q4 (forecasts made for
2023Q1-2023Q4) and refer to the following indicators:

Q1. Harmonized Index of Consumer Prices (HICP) as a proxy for inflation. We used the quar-
terly HICP data provided by Eurostat.

Q2. Sentiment index. Derived from textual data sources (abstracts of Inflation Reports re-
leased by the National Bank of Romania), calculated using NLP techniques in Intelli-

Docker to quantify economic sentiment.

Q3. Unemployment rate. Collected from official statistics sources (Romanian National Insti-

tute of Statistics), it provides a vital indicator of economic health.

The monthly data for the CEE countries in the sample (Romania, Slovakia, Slovenia, Lith-
uania, Latvia, Estonia, Poland, Hungary, Czechia) cover the period from 2006M1 to 2025M03
(with forecasts for 2025M1 to 2025M03) and pertain to the following indicators:

MI1. Harmonized Index of Consumer Prices (HICP) with monthly frequency provided by Eu-
rostat.

M2. Unemployment rate provided by Eurostat.

M3. European Commission’s Economic Sentiment Indicator (ESI). It is provided by Eurostat
for all CEE countries and reflects confidence in the economic outlook of consumers and
businesses.
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Thus, we forecast HICP index level (2015 = 100), and we report short-horizon rates only

in month-over-month (MoM) or quarter-over-quarter (QoQ) terms:

MoMy _ HICPy ) Q0Qs _ (chpt
e = 100x (HICPt—l 1), w8t = 100x \ e
rates.

- 1). We do not report year-over-year

First, we will provide some technical details on calculating the sentiment index for Ro-
mania. Using document classification and RNN, sentiment analysis produces indexes based
on the sentiment (positive, negative, neutral) associated with words in a text. This involves
scoring words as positive (+1), negative (-1), or neutral (0), summing these scores, and nor-
malizing the results to a scale between 0 and 1. Although Clements and Reade (2020) also
used a system of increments and decrements, our methodology introduces automated sentiment
index computation via IntelliDocker and expands the analysis to cover the entire Romanian
dictionary, unlike their 3,000-word limit. The evolution of the sentiment index (together with
the HICP and unemployment rate) is shown in the Appendix Figure A3, showing successive
increases and decreases. When we tested the generalizability of the results to CEE countries, we
used the standard ESI calculated by Eurostat.

Second, we will provide some details on the similar and different characteristics of the sen-

timent index and ESI used in the models with quarterly and monthly data, respectively.

Both the ESI and the Romanian Inflation-Report Sentiment Index act as “early-warning”
systems, signaling changes in economic trends before they appear in official data. However,

they differ significantly in their construction.

The Romanian Inflation-Report Sentiment Index is created using machine-learning-based
sentiment analysis on the unstructured text of the National Bank’s quarterly inflation reports. Its
goal is to measure the tone of central bank communications, mainly reflecting expert opinions
about future inflation. Since similar narrative reports are not available from other CEE central

banks, we use the ESI as our second measure.

The ESI, compiled by the European Commission’s Directorate-General for Economic
and Financial Affairs (DG ECFIN), is a composite index based on structured monthly surveys
of firms (in industry, services, retail, construction) and households. It reflects broader business
and consumer expectations about the current and future economic situation—and is designed
to track overall economic confidence rather than just inflation. The ESI is constructed in two
main steps. First, for each survey component, country-level balances of positive versus negative
responses are aggregated using moving-average country weights based on sectoral value-added
shares. Second, these country-aggregated component series are combined using fixed survey

weights to produce the overall ESI.
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In summary, the Romanian index assesses expert sentiment in central-bank statements,
while the ESI gauges perceived sentiment among a broad range of economic participants. To-
gether, they provide complementary early signals of inflationary pressures and overall econom-
ic confidence.

The Appendix (tables A1-A4) presents descriptive statistics for the main variables and
shows that only the unemployment variable follows a normal distribution.

The analysis starts with the econometric approach based on ARDL models with three

specifications:
HICP, = o, + B, x HICP,_, +y, x si, + &,, (1)
HICP, = a, + 5, xHICP,_, +y, x si,+ 6, x u, +&,,, (2)
HICP, = o, + B, xHICP,_ + 8, x u, + &, » 3)
where:

HICP is the quarterly harmonised index of consumer prices.

si 1is the sentiment index.

u 1is the unemployment rate.

0, Oy, 03, 15 Pas P3s 715 V25 01, 0, are the parameters of the model.
€1p €y €3, are the errors.

¢t 1is the time index.

ARDL models were chosen for this research because they can reduce endogeneity caused
by the connection between inflation and unemployment. Similar models are built for all CEE

countries using monthly ESI, HICP, and unemployment rates provided by Eurostat.

We explored multiple settings, including univariate and multivariate series, adding extra
predictors: the sentiment index and unemployment rate. Specifically, we investigate the follow-

ing configurations:

*  Univariate Series: we used only past values of HICP to forecast future values.

*  Multivariate Series setting I: we combined past values of HICP and the unemployment
rate.

*  Multivariate Series setting II: we combined past values of HICP and the sentiment index /
ESIL

*  Multivariate Series setting I1I: we combined past values of HICP, the sentiment index /

ESI, and the unemployment rate.

The ML models are run on Python, while the ARDL models in EViews. To implement our ML

models for time series forecasting, we proceeded as follows:
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. pre-processed the data, structuring it into suitable input-output pairs for supervised
learning.

. split the data sets into training and testing subsets.

. defined the RF, SVR, and LSTM model architecture.

. trained the model using historical data, performing a grid search for the best hyperparam-
eter values.

. used the trained model to provide forecasts on unseen future data points and assessed

the prediction accuracy.

We first prepared our datasets for use with ML methods. Preparing time series data for ML
involves specific steps to ensure the data is properly structured for modeling. One essential step
is creating lag features, which are basically previous time steps of the target variable or related
variables used as inputs for the model. Lag features help incorporate the temporal relationships

inherent in time series data by including past values to predict future ones.

In the pre-processing step, we created a dataset suitable for a supervised learning method,
consisting of pairs in the form (X, Y) where X is the input vector and Y is the output value.
In this context, X is a vector made up of several past values, and Y is the next value in the time

series that we aim to predict.

In the univariate setting, if we denote by X = (X, X, X,, ..., X7), our time series, the train-

ing and test sets are structured as follows:

( Xt—nlags—l H Xt—nlags—Z > Xt—l H Xl ) ’ (XHI ) (4)
( Xt—nlags—Z > Xt—nlags—3 > te Xt > XHI ) ’ (Xt+2 ) (5)
( Xt—nlags—S ’ Xt—nlags—4 > 0 XHI ’ Xt+2 ) > (Xt+3 ) (6)

where nlags is the number of lags (past values) used to build sequences of data points
to predict the value at #+1. In our experiments, we used a lag of 6-time steps based on an auto-

correlation analysis.

Scaling features are another crucial preprocessing step for many ML methods because
it ensures all characteristics contribute equally to the model’s learning process. Without scaling,
features with larger numerical ranges tend to dominate the learning algorithm, causing biased
results and subpar model performance. This step is especially important for algorithms based
on distance metrics. For SVR, we applied Min-Max scaling, bringing all values into the [0,1]
range. As a result, we achieved faster convergence during training, improved the model’s sta-
bility and performance, and made sure each feature was properly weighted in the prediction
process (Ahsan et al., 2021; Han et al., 2014).
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Figure 1. Monthly HICP for CEE countries (2015 = 100). The train-test split.
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Regarding the split of the quarterly data sets for Romania (training and testing subsets),
we kept the last 4 values from the time series as a test set and used the other 62 values as a train-
ing set. For the monthly data for CEE countries, we kept the last 3 values (2025M1, 2025M2,
2025M3) as a test set and used the rest (2006M1-2024M12) as a training data set. The monthly
HICP for all CEE countries is shown in Figure 1, while the ESI and unemployment rate are

shown in the Appendix, Figures A1 and A2.

For the concrete implementation of the ML methods, we used the scikit-learn (Pedregosa
et al., 2011), Keras (Chollet, 2015), and TensorFlow (Abadi et al., 2016) libraries. For RF and
SVR, we relied on scikit-learn, while for LSTM, we used Keras and TensorFlow. Scikit-learn
provides extensive customization options for RF and SVR models through various hyperpa-
rameters. For RF, users can adjust the number of trees, maximum depth, and criteria for split-
ting nodes, among other settings. Similarly, for SVR, users can select different kernels (linear,
polynomial, RBF), set the regularization parameter (C), and define the epsilon-insensitive tube

width. This flexibility allows fine-tuning of models to optimize performance for specific tasks.

Using LSTM networks with Keras, a user-friendly neural network API, and TensorFlow,
a robust open-source ML framework, provides numerous benefits such as ease of use, flexibil-
ity, and scalability. Keras offers a high-level interface for constructing neural network archi-
tectures, enabling users to develop and train complex models with minimal code. Meanwhile,
TensorFlow supplies efficient computation and optimization tools, making it ideal for training

large-scale deep learning models.

While RF and SVR models do not need a specific architecture, LSTM, on the other hand,
requires careful design. We built an LSTM network with two stacked LSTM layers and a final
Dense layer to generate forecasts. Recurrent dropout was used in both LSTM layers, along with
L2 regularization on the Dense layer to prevent overfitting. The network was optimized with
Adam.

Hyperparameter tuning is essential for optimizing machine learning models used in eco-
nomic time series prediction. These methods, ranging from traditional statistical techniques
to advanced deep learning architectures, rely heavily on hyperparameters to achieve optimal
performance. Selecting the right hyperparameters greatly impacts the model’s accuracy, robust-
ness, and ability to capture complex patterns unique to economic data. Proper hyperparameter
choice influences the model’s capacity to learn from data, generalize to new cases, and avoid
overfitting. However, manually tuning hyperparameters can be time-consuming and biased,
making automated methods necessary. Among these, grid search with cross-validation is a pop-

ular and effective approach. Grid search tests a set of predefined hyperparameter combinations
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to find the best configuration to maximize performance. Cross-validation is a dependable vali-
dation method that splits data into multiple parts, allowing thorough evaluation of the model’s
performance across different data splits. Combining grid search with cross-validation helps
practitioners find optimal hyperparameters, evaluate the model’s ability to generalize, and re-

duce overfitting risks.

Research in economic forecasting has shown that grid search with cross-validation ef-
fectively improves the accuracy and consistency of predictive models. For example, studies
by Hyndman and Athanasopoulos (2018) highlight how hyperparameter tuning through grid
search with cross-validation enhances the forecasting ability of traditional time series methods
like ARIMA and exponential smoothing. Additionally, in recent years, machine learning tech-
niques such as ensemble methods, SVMs, and deep learning models like RNNs and LSTMs
have become more popular in economic time series forecasting. Grid search with cross-val-
idation has been key in fine-tuning hyperparameters of machine learning models to achieve
better predictive accuracy and stability, as demonstrated in a study on stock price prediction
(Hoque and Aljamaan, 2021). Similarly, in computer vision, this approach has helped fine-tune
hyperparameters for convolutional neural networks, resulting in higher accuracy and robustness
in image recognition (Szegedy et al., 2016). These results highlight the important role of hy-

perparameter tuning techniques in reaching top-tier performance across various applications.

Therefore, hyperparameter tuning - by exploring the hyperparameter space and thorough-
ly assessing model performance - is a vital step in optimizing ML models. As the field of eco-
nomic forecasting advances, the significance of effective hyperparameter tuning techniques like

grid search with cross-validation cannot be overstated.

Our approach uses a grid search to find the best parameters for RF, SVR, and LSTM.
We apply 3-fold cross-validation to ensure reliable performance evaluation. Because of the se-
quential nature of the data, we use the TimeSeriesSplit class from the scikit-learn library, which
preserves the order of data points during cross-validation. This method divides the data into
training and testing sets so that each training set precedes its corresponding test set, mimicking

a real-world forecasting situation.

For the RF, we searched for the best values for the following parameters:

. n_estimators - specifies the number of trees in the forest;
. max_depth - sets the maximum depth of each tree in the forest;

*  min_samples_split - defines the minimum number of samples required to split an internal
node;

*  max_features - specifies the number of features to consider when looking for the best split
(as fraction of the total number of features.
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For SVR, we used the following parameters to find the best model:

. C — this parameter determines the strength of regularization, also called the regularization

parameter;

*  gamma - specifies the kernel coefficient for 'rbf', and 'poly’;

*  coef0 - is the independent term in the kernel function. It is only significant in 'poly' and
'sigmoid' kernels;

. Epsilon - defines the epsilon-tube where errors are not penalized. It controls the margin's
width in the e-insensitive loss function;

*  kernel - specifies the type of kernel to use in the algorithm (we used 'poly’, and 'tbf' in our

experiments);

. degree - the degree of the polynomial kernel function (‘poly").

For LSTM, we considered the following hyperparameters for tuning.

. recurrent dropout (layerl, layer2) - specifies the dropout rate for recurrent connections
in the LSTM units during training, helping to prevent overfitting;

*  dropout (layer 1, layer2) - specifies the dropout rate for the forward connections. Used
to prevent overfitting;

. number of neurons - the number of LSTM units or neurons in the hidden layers;

. batch size - the number of samples processed before updating the model's parameters
during training;

* L2 forthe kernel regularizer - allows us to apply L2 regularization to the weights of the fi-
nal Dense layer. L2 regularization penalizes large weights by adding a term to the loss
function that is proportional to the square of the weights, helping to prevent overfitting.

The values used for these parameters are presented in Table 1.

After selecting the best parameters, we trained the model and assessed its performance
on both the training and testing datasets. During the training of the LSTM models, we used
the Mean Squared Error (MSE) as the loss function, while also monitoring the Mean Abso-
lute Percentage Error (MAPE) and Mean Absolute Error (MAE). MSE calculates the average
squared difference between forecasted and actual values, reflecting the model’s variance (James
et al., 2013). MAPE, on the other hand, measures the average percentage difference between
predicted and actual values, making it useful for understanding errors in relation to the true val-
ue (Hyndman and Koehler, 2006). In regression tasks, MSE, MAPE, and MAE serve to evalu-
ate different aspects of model performance. Although MSE penalizes larger errors more heavily
because of squaring, MAPE expresses errors as a percentage of the actual values, offering
insight into the relative size of errors. MAPE is especially useful in forecasting and business
settings where understanding the magnitude of error matters (Hyndman and Koehler, 2006).
MSE, MAPE, and MAE are calculated as follows:
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Table 1. The values for parameters in SVR, RF and LSTM networks

Grid parameters

SVR RF LSTM
Parameter Value Parameter Value Parameter Value
C 1,2,3,4,56,7,8,9 | n_estimators >0, 75,100, 150, | Recurrent 0.0,0.1,0.2
200 dropout layer 1
0.1,0.2,0.3,04,0.5, None, 5, 10, 20, | Recurrent
Gamma 0.6,0.7,0.8,0.9 max_depth 30, 40, 50 dropout layer 2 | 90 01.0-2
0,0.01,0.5,0.1, 1.0, . . 2,5,10,12 15,
Coef0 20, 2.5 min_samples_split 20 Dropout layer1 0.0,0.1,0.2
epsilon 821 0.05,0.1,0.2, max_features 819 0.3,0.5,07, Dropout layer2 | 0.0,0.1,0.2
o 0.0, 0.0001,
kernel rbf, poly L2 regularization 0.001, 0.003
degree 1,2,3,4,5 Number of units | 128, 256, 512
Batch size 1,8,16
Source: own construction
I < N2
MSE:;Z(yi_yi) (7)
i=1
1 n o A
MAPE = —>"|21=2/ 100 )
n i=1 yi
1 n
MAE:;Z|yi_yi| (9)

i=1
where:
n — the number of data points;
y; — actual observed value for a certain i data point;

y; — predicted value for a particular i data point.

All preprocessing and model selection are performed within the training data only to avoid
look-ahead bias. Standardization/scaling parameters are fit on each training window and then

applied to the corresponding validation/test data; no information from the validation/test sets
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enters the fit. Hyperparameters are chosen by time-series cross-validation with expanding
windows (scikit-learn TimeSeriesSplit), preserving temporal order. For neural networks, ear-
ly stopping monitors the within-fold validation loss only. After selection, each model is refit

on the entire training window and evaluated once on the held-out test observations.

Finally, using the trained model, we predicted the next three HICP values and calculated

the performance metrics.

4. Results

4.1 Results based on simulations

To assess whether our models outperform a naive forecast, we conducted two simulation stud-
ies.
First, we conducted a basic simulation study by generating two series with 100 observa-

tions each, which were used to fit ARDL and ML models (RF, SVR, and LSTM) and to make

forecasts.
We considered two data-generating processes (DGPs):

x,=03xx_ +e,

(10)

yt:0.2><|xt|+e2t (11)

where e,,, e,, are Gaussian white noise (random numbers).

We generated two data series, each with 100 values, and split them into training and test-
ing sets—using the first 80 for training and the remaining for testing. Using these datasets, we
fitted four models: ARDL, SVR, RF, and LSTM, based on the feature vector provided by:

X, ={Viis Via> Vis» X0 X4} (12)

After fitting the models, we performed one-step-ahead predictions on the test set and com-
pared the performance metrics of the four prediction models mentioned above with the naive

forecast provided by:

J——

naive __
Y

=DYe-1 (13)

The ARDL model was estimated using OLS with an intercept and the previously men-

tioned regressor. The RF was built with 200 trees and the following parameters:
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min_samples_split = 10
min_samples leaf =1
max_features = 0.2

max_depth = 10

The SVR model used a one-degree polynomial kernel with C = 1 and ¢ = 0.01 and
the LSTM network had a single layer with 16 units, trained for 50 epochs with a batch size of 8.

The loss per test point was the squared error, needed for Diebold-Mariano tests:
[,=(y,—7,)* . We reported the aggregated metrics on the test set: RMSE, MSE, MAE, and their
standard deviations in Table 2 for 200 replications of the experiment.

Table 2. Performance metrics for the test sample (one-step forecasts)

Method RMSE sd(RMSE) MSE sd(MSE) MAE sd(MAE)
ARDL 0.8059 0.1701 0.6495 0.3342 0.6943 0.1491
RF 0.8069 0.1631 0.6510 0.3061 0.6725 0.1409
SVR 0.7931 0.1804 0.6291 0.3396 0.6775 0.1570
LSTM 0.7316 0.2043 0.5353 0.4070 0.5969 0.1720
Naive 1.0671 0.2363 1.1388 0.6600 0.8761 0.2063

Source: own computations

We performed paired comparisons (each method versus Naive) and computed Diebold—
Mariano (DM) test on d squared-error loss, which lare shown in Table 3. For 4 =1, DM reduc-
es to a t-type statistic on where d, =1, —1,,;,., We also computed the Wilcoxon signed-rank test
on paired 1,,, versus 1 ;. . The 1-sided p-values are converted when the observed statistic has
the direction consistent with the alternative £[d] < 0 (all four methods produced negative d. For
h-step-ahead forecasts the error sequence is overlapping, so we estimate Var(dt) with a Newey—

West HAC estimator using a Bartlett kernel and truncation lag g = h — 1.
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Table 3. Paired tests, DM, and Wilcoxon p-values

DM DM Wilcoxon Wilcoxon
Comparison Mean(d) DM stat p-value p-value p-value p-value
(2-sided) (1-sided) (2-sided) (1-sided)
ARDL vs Naive -0.4892 -2.3148 0.0320 0.0160 0.0266 0.0133
RF vs Naive -0.4877 -2.0313 0.0564 0.0282 0.0296 0.0148
SVR vs Naive -0.5097 -2.4419 0.0246 0.0123 0.0266 0.0133
LSTM vs Naive -0.6035 -2.1993 0.0404 0.0202 00362 0.0181

Source: own computations

Table 3 shows paired comparisons of replication losses for all four methods versus the
naive forecast. All four fitted methods produce significantly lower one-step-ahead MSE than
the naive hold-last benchmark in this experiment. In the test sample, the naive MSE was 1.1388;
LSTM achieves the greatest reduction (MSE = 0.5353, about 53% lower), while ARDL and
SVR decrease MSE by approximately 43% (MSE around 0.6495 and 0.6291, respectively), and
RF by about 45% (MSE = 0.6510). These effect sizes are practically large and consistent across
replications (see mean = SD tables). We assessed significance with paired one-sided Diebold—
Mariano tests (Hi: method loss < naive loss) and one-sided Wilcoxon signed-rank tests as a ro-
bust check. Converting the reported two-sided DM p-values to one-sided p-values (and using
Wilcoxon one-sided directly) yields DM one-sided p = 0.0160 (ARDL), 0.0282 (RF), 0.0123
(SVR), and 0.0202 (LSTM), and Wilcoxon one-sided p = 0.0133, 0.0148, 0.0133, 0.0181, re-
spectively. After Benjamini-Hochberg FDR correction across the four comparisons, all adjusted
p-values remain below 0.05, confirming that each method outperforms the naive benchmark
even after controlling for multiple testing. We observed that RF is marginal on the parametric
DM test but significant with the Wilcoxon test, indicating minor departures from DM’s normal-
ity assumptions (such as skewness or outliers) in RF’s paired differences. Reporting both tests

and the effect sizes above provides the clearest and most transparent account.

The second simulation study examined more complex DGPs that better resemble real

Processcs.

Specifically, we generated a monthly series of log CPI and two exogenous covariates (un-
employment #, and sentiment index s,) under a small set of controlled scenarios. Each Monte

Carlo replication produces a panel:
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(date,, InCPI,, u,, s, ); (14)

with a monthly index ¢. The core DGP for log-CPI is a persistent autoregressive process
with exogenous effects, optional MA(1) shocks, an optional regime nonlinearity on s¢, and

an optional structural break. Specifically, we simulate:

U=+ Gu, - ) Fe®, eO~N(0,5.2) (15)

S =t Bl —p) e, g ~N(0, 0,7 (16)

w, ~N(0, 5,2) (17)

n, =w,+ 0w,_;, MA(1) innovation; if 6 = 0, reduces to w_¢ (18)

INCPL=p+ ¢ InCPL + B, u,  + B, 5, + y 5, + fr (5,4) +17, + AP (19)
where:

*  fu(s.)1s an optional nonlinear/regime term activated when sentiment crosses a threshold
S,1 > s In the default scenarios, we set
3 e(s,f1 -5 ) S, >

fNL (St—l ) -

0 otherwise

So, sentiment can increase persistence or level, conditional on a high-sentiment regime.
e A® ig an additive structural break applied from a break time ¢ > 7,

At(break) — {5 t2 tbreak
0 1<t

The simulator enforces that #,,.,, is placed only when there is sufficient pre- and post-break data.
We generated 5 datasets, each representing a different scenario:

. baseline linear: ¢ =0.95, p,=-0.05, ,=0.10,06 =0

. high_persistence: ¢ =0.99

. nonlinear_regime: ¢ =0.90, s"=0.5,x=0.4,y=0.0

*  structural break: additive A= 0.08 in InCPI, at safe breaks

. ma_noninvertible: = —1.2 to probe non-invertible shocks
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Our MA non-invertible scenario and regime/break experiments are included to address
concerns that annual-rate constructions can induce non-invertibility and complicate inference;
by working in the CPI, domain and testing different DGP regimes, we ensure models are eval-

uated under the pathologies that can appear in real conditions.

We used R = 200 replications with T = 240 months. The simulation script enforces
T > Ny + H,, + B, where N, = 6, is the lag window used by all models, H,,, = 6 is
the maximal forecast horizon evaluated, and B is a buffer for stable training (currently we set
B = 12) which prevents invalid lag construction. The break position 7., is chosen so that
Loreak = Niagst 12, e < T — H,,,, — 6 to ensure sufficient pre/post samples for estimation and

evaluation; if no valid break is possible, no break is applied.

We fitted the same four models on each replication: (1) an ARDL-style linear model es-
timated by OLS; (2) an RF regressor; (3) an SVR model with a polynomial kernel; and (4)
a small LSTM network. All methods use the same input data: the last N,,,, = 6 lags of InCP/

and the same lagging convention for covariates (unemployment and sentiment).

For the ARDL OLS we built regressors:

X, ={InCPI_,....,InCPI_g, u_,, ..., U_g, S s S, ¢} (20)
and estimated
InCPI, =0 + X, + ¢ (21

For RF, SVR, and LSTM we constructed a vector following the same lag-window con-
vention. Before SVR and LSTM, we standardized features (zero mean, unit variance). For each
replication, the last H,,,, = 6 months are reserved for evaluation. Let T be the series length;
the training sample ends at index ¢,,,= T — H,

nax— L. Forecasts are generated recursively for
horizons 4 € {1, 3, 6}.

Besides the performance metrics used in the first simulation study, for each scenario and
forecast horizon, we computed the win_rate of a forecasting method as the fraction of Mon-
te-Carlo replications in which that method attains the smallest RMSE. Denote by L,,, the loss
(RMSE) in replication » for method m and let M be the set of methods. For replication » we de-

1 .
— ifmeargminl, ] ) o
fined w, ,, = & jeM " where k, is the number of methods tied for the minimum

i

0 otherwise

loss in replication 7 (so ties are split equally). The reported win-rate is:
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1 R
win_rate, = E Zwr,m
r=1

with R the number of replications. We reported bootstrap 95% confidence intervals for win-
rates (nonparametric resampling of replications) and complemented win-rates with mean + sd
of RMSE and paired statistical tests (paired t-test and Wilcoxon signed-rank) on replication

RMSE differences to assess whether observed ranking differences are statistically significant.

Table 4 outlines the parameters used in the simulations.

Table 4. Default parameters used in the simulation

Parameters Values

Replications R 200

Serieslength T 240 months

Lags 6

Forecast horizons {1, 3, 6} months

RF: n_estimators 200

SVR polynomial kernel (degree 1), C= 1.0, £ = 0.01
LSTM 16 units, 50 epochs, batch size 8

Source: own construction

The performance metrics for each scenario, forecasting horizon, and method are present-
ed in Tables 5, 6, 7, 8, and 9, while the paired comparisons (each method versus Naive) and
the DM and Wilcoxon one-sided tests are presented in Tables A6-A7.
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Table 5. Performance metrics for the baseline scenario

Method Mean(RMSE) sd(RMSE) Mean(MAPE) sd(MAPE)
H=1
ARDL 0.3959 0.3289 3.4890 29674
LSTM 0.4724 0.3636 4.2088 3.4600
Naive 0.3972 0.3228 3.4811 2.9046
RF 0.4445 0.3446 3.8817 3.0782
SVR 0.4117 0.3297 3.5934 2.9375
H=3
ARDL 0.4257 0.3037 3.6753 2.6657
LSTM 0.4636 0.3504 4.0336 3.1793
Naive 0.6877 0.5119 5.8805 4.2978
RF 0.4560 0.3441 3.9508 2.9681
SVR 0.4245 0.2968 3.6648 2.6094
H=6
ARDL 0.4350 0.3308 3.8381 3.0583
LSTM 0.5184 0.3755 4.6114 3.5766
Naive 1.0008 0.7415 8.8593 6.8600
RF 0.5016 0.3913 4.4790 3.7828
SVR 0.4470 0.3302 3.9573 3.0982

Source: own computations
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Table 6. Performance metrics for the MA noninvertible scenario

Method Mean(RMSE) sd(RMSE) Mean(MAPE) sd(MAPE)
H=1
ARDL 0.4831 0.3725 4.0363 3.0791
LSTM 0.6640 0.5451 5.5748 4.6241
Naive 0.6026 0.4373 5.0275 3.6783
RF 0.4755 0.3974 4.0028 3.4231
SVR 0.4739 0.3773 3.9748 3.1883
H=3
ARDL 0.5106 0.3800 4.2899 3.2413
LSTM 0.6813 0.5163 5.7253 4.4557
Naive 0.6967 0.5199 5.8242 4.3998
RF 0.5528 0.4252 4.6538 3.7072
SVR 0.4913 0.3845 41407 3.3147
H=6
ARDL 0.5760 0.4276 4.8668 3.6972
LSTM 0.7484 0.5446 6.3034 4.7679
Naive 0.7676 0.6375 6.5006 5.5594
RF 0.5349 0.4476 4.5549 3.9959
SVR 0.5310 0.4182 4.4912 3.6875

Source: own computations
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Table 7. Performance metrics for the high persistence scenario

Method Mean(RMSE) sd(RMSE) Mean(MAPE) sd(MAPE)
H=1
ARDL 0.3953 0.3289 0.7412 0.6234
LSTM 0.7007 0.5272 1.3038 0.9786
Naive 0.3953 0.3266 0.7413 0.6204
RF 0.5371 0.4174 0.9992 0.7765
SVR 0.5611 0.4248 1.0460 0.7947
H=3
ARDL 0.4204 0.3045 0.7803 0.5618
LSTM 0.7013 0.5418 1.2943 0.9876
Naive 0.7148 0.5520 1.3283 1.0178
RF 0.6682 0.6217 1.2334 1.1352
SVR 0.5458 0.4414 1.0106 0.8100
H=6
ARDL 0.4382 0.3345 0.8144 0.6262
LSTM 0.4344 0.4574 1.3516 1.0029
Naive 1.0754 0.8007 2.0079 1.4916
RF 0.8543 0.7403 1.5807 1.3437
SVR 0.6595 0.4566 1.2316 0.8649

Source: own computations
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Table 8. Performance metrics for the non linear regime scenario

Method Mean(RMSE) sd(RMSE) Mean(MAPE) sd(MAPE)
H=1
ARDL 0.4133 0.3380 43.5098 119.5565
LSTM 0.3787 0.4556 31.2507 77.2534
Naive 0.5028 0.3712 53.7913 144.6628
RF 0.4995 0.3941 45.0396 112.6434
SVR 0.4064 0.3325 41.0670 104.4457
H=3
ARDL 0.5349 0.4012 63.9732 254.8887
LSTM 0.3353 0.3732 41.1261 199.6160
Naive 1.0265 0.7700 118.9202 688.5146
RF 0.6306 0.4323 69.2605 262.5694
SVR 0.5373 0.4017 64.7472 263.4395
H=6
ARDL 0.6536 0.4471 47.6812 85.8452
LSTM 0.4801 0.4587 36.0240 54.8546
Naive 1.4918 1.1382 120.6361 271.2341
RF 0.7062 0.5161 50.0000 95.5245
SVR 0.6772 0.4611 48.5897 85.7147

Source: own computations
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Table 9. Performance metrics for the structural break regime scenario

Method Mean(RMSE) sd(RMSE) Mean(MAPE) sd(MAPE)
H=1
ARDL 0.4034 0.3301 41605 3.5618
LSTM 0.3620 0.3599 3.7435 2.9520
Naive 0.3972 0.3228 4.0664 3.4248
RF 0.4493 0.3503 4.6229 3.8844
SVR 0.4157 0.3290 4.2514 3.5201
H=3
ARDL 0.4310 0.3044 4.3693 3.2208
LSTM 0.3642 0.2721 3.7325 2.8881
Naive 0.6877 0.5118 6.8433 5.0316
RF 0.4475 0.3498 4.5557 3.6537
SVR 0.4275 0.2971 4.3448 3.1650
H=6
ARDL 0.4334 0.3291 4.5163 3.7019
LSTM 0.3144 0.3378 3.3968 2.9580
Naive 1.0008 0.7415 10.3928 8.2422
RF 0.5165 0.3963 5.5304 4.8589
SVR 0.4455 0.331 4.6617 3.8107

Source: own computations

Across all simulated scenarios and forecast horizons, the learning-based models (ARDL,
RF, SVR, LSTM) consistently outperform the naive benchmark. Aggregating results over repli-
cations shows lower errors for our models on RMSE and MAE, with improvements that become
more pronounced as the horizon lengthens. Formal Diebold—Mariano tests against the naive
forecast corroborate these gains, indicating that the error reductions are not due to sampling

variability but reflect genuine predictive improvements.

The performance edge is robust to the underlying data-generating mechanism. ARDL pro-
vides stable, across-the-board accuracy, SVR excels when short-memory or moving-average
features dominate, and LSTM delivers competitive (often best-in-class) long-horizon forecasts
when nonlinearities or regime changes are present. While the naive forecast can be competitive
at h=1 in some scenarios, it deteriorates rapidly with horizon, whereas our models either main-
tain their advantage or widen it. This pattern is consistent across the scenario-specific win-rates
and the paired tests versus the benchmark.
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From a practical standpoint, these findings justify replacing the naive approach with our
modeling toolkit in applications where accuracy beyond the next step matters. The combination
of lower average errors, statistically significant improvements, and complementary strengths
across methods suggests that practitioners can expect reliable gains over the naive baseline,
with ARDL as a robust default and SVR/LSTM offering additional benefits when the data ex-
hibit MA structure or nonlinear/regime-shift dynamics.

4.2 ARDL models for Romania using quarterly data and
sentiment index

The ADF test on seasonally adjusted datasets indicated that, except for the sentiment index,
which is stationary in level at a 1% significance level, the other series are integrated of order
one. The ARDL models used to develop HICP forecasts are presented in Table 10. Multicol-
linearity is not an issue in this case. Additionally, there is no significant correlation between

predictors, as Pearson’s coefficient is 0.202.

Table 10. The ARDL estimates

Indicator Coef./stat. with prob in brackets
Model 1 Model 2 Model 3
HICP 0.836%** 0.833%** 0.828%***
1 (0.000) (0.000) (0.066)
si -0.060* -0.059* B
t (0.081) (0.081)
unemblovment _ -0.071* -0.079*
ploy t (0.061) (0.057)
constant 16.884** 17.710%* 18.515
(0.016) (0.015) (0.011)
Breusch-Godfrey test for 1.923 1.852 2.334
one lag (0.1655) (0.173) (0.126)
. 4155 7.536 3.935
White test (0.5272) (0.581) (0.558)
. . 0.899 0.807 0.903
Shapiro-Wilk test (0.184) (0.197) (0.179)
2.456 2.356 1.315
Ramsey Reset Test (0.117) (0.124) (0.251)

Source: own computations

Note: ****** syggest significance at 10%,5% and 1% level, respectively. p-values in brackets
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These ARDL models form the basis of our HICP forecasting method, and their prediction
accuracy is evaluated. Table 11 shows that Model 1, which includes the previous period’s HICP
and the current period’s sentiment index, outperforms the other ARDL models based on MAPE
and MSE.

Table 11. Inflation forecasts based on ARDL models and their accuracy
(horizon 2023Q1-2023Q4)

Time Model 1 Model 2 Model 3
2023Q1 114.19 114.23 114.46
2023Q2 112.33 112.42 112.87
2023Q3 110.81 110.94 111.57
2023Q4 109.72 109.89 110.49
MAPE 1.73% 1.81% 2.15%
MSE 4.53 5.02 7.36

Source: own computations

4.3 Machine learning techniques for quarterly data
for Romania

The best-performing models are identified by the hyperparameter values listed in Table 12. We
trained the models using these parameters and then used them to predict the next four HICP

values.
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Table 12. The optimal values for the hyperparameters of the machine
learning methods for quarterly data, for Romania

Values of the hyperparameters for

Hyper- Multivariate setting
setting HICP- HICP-Sentiment | HICP-Unemployment-
Unemployment index Sentiment Index

n_estimators 75 200 50 50

max_depth None None None None
RF min samples

) samp 15 15 5 2

split

max_features 1.0 1.0 1.0 1.0

C 4 1 1 6

gamma 0.7 0.6 0.4 0.1

Coef0 1.0 0.01 0.01 2.5
SVR

epsilon 0.01 0.01 0.01 0.01

kernel poly poly poly poly

degree 1 1 1 1

Recurrent 0.1 0.2 0.0 0.1

dropout layer 1

Recurrent

dropout layer 2 0.1 0.1 0.1 0.0

Dropout layer 1 0.2 0.2 0.2 0.2
LSTM Dropout layer 2 0.0 0.1 0.0 0.2

Number 512 512 512 512

of neurons

Batch size 1 1 1 1

L2 for

the kernel_ 0.0001 0.003 0.003 0.003

regularizer

Source: own computations
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While Table 11 reports three ARDL forecasts for 2023Q1-2023Q4 with overall accuracy
metrics: MAPE = 1.73% (Model 1), 1.81% (Model 2), and 2.15% (Model 3) with the corre-
sponding MSE values approximately 4.53, 5.02, and 7.36, Table 13 presents the performance
of RF, SVR, and LSTM under four feature settings. In the univariate setting, the machine learn-
ing methods significantly outperform the ARDL models by achieving lower test errors: RF
has a test MSE of 8.13 with a MAPE of 2.20%, SVR has a test MSE of 1.40 with a MAPE
of 0.91%, and LSTM has a test MSE of 0.55 with a MAPE of 0.65%. Both SVR and LSTM
improved on ARDL Model 1 (with a MAPE of 1.73%) in the univariate test sample, with LSTM
providing the largest reduction in MAPE. In the multivariate HICP-unemployment setup, SVR
(test MSE = 3.05, MAPE 1.28%) and LSTM (test MSE = 3.86, MAPE 1.46%) again achieve
lower test MAPE than ARDL Model 1, which has a MAPE of 1.73%. Conversely, RF (2.29%
MAPE) performs worse than ARDL. In the HICP—sentiment multivariate case, RF and LSTM
perform poorly on the test set, with RF showing a MAPE of 2.30% and LSTM 2.51%, while
SVR’s test MAPE (1.75%) 1s roughly equal to ARDL Model 1’s (1.73%). Here, ARDL remains
competitive and, in some comparisons (Model 1 versus RF/LSTM), even slightly better. Finally,
in the comprehensive HICP—unemployment—sentiment model, machine learning methods show
mixed results: RF has a test MAPE of 2.56% (worse than ARDL), SVR scores 1.72% (similar
or slightly better), and LSTM achieves 1.12% (better than ARDL Model 1). In summary, ML
methods - particularly SVR and LSTM - can outperform ARDL in several contexts, notably
the univariate and HICP-unemployment-sentiment cases. However, ARDL remains competi-
tive and sometimes superior when only sentiment indexes are included. The ranking principally

depends on the covariates chosen.

On the quarterly Romanian series, the LSTM model that incorporates HICP and unem-
ployment fits the training data very well but shows a clear drop in out-of-sample accuracy,
indicating that its high complexity leads it to capture noise rather than the underlying signal.
In contrast, the SVR approach, due to its built-in margin maximization and relatively simple
parameterization, maintains consistent performance between the training and test sets, demon-
strating stronger generalization on unseen quarterly data. When we experimented with reduc-
ing the LSTM’s size and increasing its regularization, the gap between training and test per-
formance narrowed, confirming that the original architecture was too flexible for the limited
volume of quarterly data. These findings emphasize that even at lower frequencies, models
with effective capacity control can provide more stable forecasts than over-parameterized deep

learning networks.
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Table 13. The performance metrics in the case of RF, SVR and LSTM network

RF SVR LSTM

Setting Data set
MAE| MSE | MAPE| MAE | MSE | MAPE | MAE | MSE | MAPE

.. Traindataset | 1.13 | 248 | 1.06% | 1.23 447 | 116% | 098 | 1.83 | 0.92%
Univariate set-

ting Testdataset | 240 | 813 |2.20% | 1.00 | 1.40 | 091% | 070 | 0.55 | 0.65%
Multivariate Train dataset | 112 | 2.43 | 1.06% | 112 | 4.33 | 1.12% | 0.60 | 0.67 | 0.57%
setting: HICP-

Unemployment | Testdataset | 2.51 | 788 |2.29% | 140 | 3.05 | 1.28% | 1.59 | 3.86 | 1.46%

Multivariate set- | Traindataset | 0.74 | 118 | 0.70% | 117 | 3.97 | 1.11% | 0.35 | 0.23 | 0.33%
ting: HICP-Senti-

ment Index Test data set 2.51 | 963 |2.30% | 1.93 3.98 | 1.75% | 2.78 | 11.33 | 2.51%
Multivariate Train dataset | 0.68 | 097 | 0.62% | 1.13 3.88 | 1.07% | 0.36 | 0.26 | 0.34%
setting:

HICP-Unemploy-
ment-Sentiment | Test data set 2.79 | 11.05 | 2.56% | 1.88 423 | 1.72% | 1.22 | 2.02 | 1.12%
Index

Source: own computations

The results highlight the importance of using multiple economic indicators in forecasting
models. LSTM networks, with their ability to handle complex, nonlinear relationships and in-
teractions among predictors, consistently outperformed RF and SVR in this study. However,
when only the sentiment index is included, the ARDL models demonstrated a greater capacity

to provide more accurate inflation forecasts over a short-term horizon.

4.4 ARDL models for CEE countries using monthly data and ESI

The results of the unit root test show that the data series for HICP and unemployment are I(1),
while the series for ESI are I(0) for CEE countries. This enables the use of ARDL models.
The inflation rate in levels is I(1) at a 1% significance level, which meets the condition for

the dependent variable to be non-stationary.

The results shown in Table 14 display ARDL estimations for CEE countries from 2006M 1
to 2024M12. Unemployment significantly reduced HICP only in Bulgaria, the Czech Republic,
Slovakia, Slovenia, Latvia, and Lithuania, while ESI positively and significantly affected HICP

in Lithuania, Bulgaria, Czechia, Estonia, and Slovenia.

Prague Economic Papers, 2025, 34 (4),495-558, https://doi.org/10.18267/j.pep.898 529



Bogdan Oancea, Mihaela Simionescu, Richard Pospisil

Table 14. The results of estimations for ARDL models for CEE countries
(2006M1- 2024M12)

Countries
Variable
BG cz EE HU Lv LT PL RO SK Sl
HICP 1.343%%% | 1,086%** | 1.277%*% | 1428%** | 133]%%% | ]50%xx | ] 358%kx | | 4o5¥kx | ] 445%xx | ] ]GQ%**
1 (0.000) (0.000) (0.000) | (0.000) | (0.000) (0.000) | (0.0606) | (0.000) (0.000) (0.000)
HICP -0.391*** |  0.089 -0.005 |-0.264**| -0.052 |-0.648***| —0.210% | —0.423*** | —0.672*** |  0.133
2 (0.0005) | (0.366) (0.958) | (0.025) | (0.638) (0.000) | (0.0659) | (0.000) (0.000) (0.206)
HICP 0.261%* | —0.177*** | ~0.267*** | —-0.029 | —0.281*** | 0.344*** | _0.008 ~ 0.225*** | —0.150
3 (0.018) (0.009) | (0.0001) | (0.808) | (0.000) (0.005) | (0.942) (0.0007) | (0.155)
HICP —0.213%** _ ~ -0.132% ~ —0.224%** | _0.138%* ~ ~ —0.150%*
4 (0.0012) (0.051) (0.0009) | (0.040) (0.033)
Es| 0.001* | 0.023** | 0.010* ~ -0.0003 | 0.004* _ -0.005* 0.004 0.017*
t (0.076) (0.013) (0.066) (0.953) | (0.0696) (0.205) (0.993) (0.053)
ES| ~ -0.029*% ~ ~ ~ ~ ~0.025%* ~ ~ —0.034%**
v (0.060) (0.016) (0.010)
0.028%**
ESles - - - (0.005) - - - - - -
unemploy- -0.030** | -0.078* 0.003 -0.015 | -0.023* | -0.009* | -0.017 | -0.059** | -0.588* | —-0.020*
ment, (0.036) (0.075) (0.817) | (0.532) | (0.099) (0.084) | (0.185) (0.039) (0.078) (0.092)
constant 0.375 1.273 -1.350 0.215 0.615 -0.263 0.161 0.934 0.452 -0.114
(0.562) (0.285) (0.105) | (0.748) | (0.444) (0.677) | (0.771) (0.143) (0.639) (0.804)
Breusch-God-
fc':leea’t'f';n 0.009 1132 5.668 1.147 0.461 3.678 2.437 1.153 2.502 2.858
LM Test for (0.9207) | (0.2873) | (0.0173) | (0.2246) | (0.4971) | (0.055) | (0.1185) | (0.2829) (0.113) | (0.0909)
lag=1: stat.
Breusch-God-
fc':leea’t'f;n 0.741 3.766 6.478 2475 0.591 2174 2.409 1153 3.567 3.388
LM Test for (0.6902) | (0.1521) | (0.0393) | (0.2901) | (0.7441) | (0.140) | (0.122) | (0.5618) (0.168) | (0.1837)
lag=2: stat.
:::)csﬂeh::;tic_ 0.584 0.211 5.924 0.573 4.740 2.901 5.780 0.008 0.005 6.616
; (0.4445) | (0.6459) | (0.014) | (0.4488) | (0.0295) | (0.0885) | (0.0162) | (0.925) (0.9433) | (0.0101)
ity test: stat.
Jarque-Bera
test: stat. 8.629 8.786 4.167 3.456 3.879 1.270 4.556 2.997 3.613 3.374
(p-value (0.00001) | (0.000) (0.124) | (0.063) | (0.143) (0.529) | (0.102) (0.102) (0.164) (0.185)
in brackets)
Ramsey Reset | 0.0104 0.205 0.175 0.785 0.040 2.307 0.248 0.043 0.039 0.529
Test: stat. (0.9174) | (0.6506) | (0.6754) | (0.3755) | (0.8408) | (0.1288) | (0.6178) | (0.8349) | (0.1279) | (0.4667)
Source: own computations in EViews
Note: *** ¥** suggest significance at 10%, 5%, 1% level respectively. p-value in brackets
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The forecasting performance metrics in Table 15 show that the most accurate HICP fore-
casts using ARDL models are for Slovakia during 2025M1-2025M3.

Table 15. The evaluation of HICP forecast accuracy by ARDL for CEE countries
(2025M1-2025M3)

Country RMSE MSE MAE MAPE(%)
BG 2.005 4.020 2.004 1411
cz 1.677 2.812 1.664 1.076
EE 2.332 5.438 2.234 1.399
HU 1.560 2433 1.502 0.870
Lv 1.417 2.007 1.220 0.819
LT 2.467 6.086 2.460 1.585
PL 0.888 0.788 0.887 0.581
RO 1.114 1.240 1.099 0.707
SK 0.328 0.107 0.304 0.235
Sl 2.514 6.320 2.501 1.695

Source: own computations in EViews

4.5 Machine learning techniques for monthly data for CEE
countries with ESI

We use the same grid search process to determine the best hyperparameter values for the ma-
chine learning methods used, specifically RF, SVM, and LSTM. These values are listed for
all countries in Tables A8-A10. The search space was identical to the one previously shown
in Table 1.

We ran forecasting models using optimal hyperparameter values and calculated their per-

formance metrics. The results are shown in Tables 16-18.
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Table 16. The performance metrics for RF model under different settings

Setting Metric | BG RO | SK | SI | LT | LV | EE | PL | HU | CZ

MAPE Train | 0.16% | 0.13% | 0.18% | 0.44% 0.34%  0.46% | 0.18% | 0.11%  0.33% | 0.17%
. MSETrain | 0.04 | 0.03 | 006 | 0.34 | 0.20 | 046 | 0.09 | 0.02 | 017 | 0.09

Univariate

setting
MAPE Test | 2.68% | 1.64% | 1.94% | 0.67% | 2.57% | 1.80% | 1.76% | 1.19% | 2.35% | 1.43%
MSETest | 1473 | 690 | 842 | 1.05 | 16.44 | 8.20 | 859 | 3.48 | 1690 | 493
MAPE Train | 0.30% | 0.14% | 0.09% | 0.40%  0.33%  0.40% | 0.17% | 0.10%  0.16% | 0.16%
MSETrain | 015 | 0.03 | 002 | 0.30 | 0.20 | 0.30 | 0.08 | 0.02 | 0.06 | 0.09

HICP-Unem-

I

ployment MAPE Test |2.58% | 2.19% | 1.96% | 1.34% | 2.68% | 1.77% | 1.85% | 1.44% | 2.40% | 1.49%
MSETest | 13.66 | 12.05 | 862 | 3.34 | 1771 | 801 | 9.54 | 505 | 1791 | 5.38
MAPE Train | 0.16% | 0.16% | 0.11% | 0.42%  0.33% | 0.54% | 0.42% | 0.26% 0.32% | 0.17%
MSE Train | 0.04 | 0.05 | 003 | 0.31 | 0.20 | 0.58 | 0.54 | 012 | 0.20 | 0.12

HICP-ESI
MAPE Test | 2.64% | 2.38% | 2.43% | 0.65% | 3.53% | 2.74% | 2.96% | 1.70% | 2.92% | 1.33%
MSE Test | 14.34 | 14.72 | 13.23 | 1.02 | 30.50 | 18.22 | 22.46 | 6.87 | 26.24 | 4.26
MAPE Train | 0.14% | 0.16% | 0.10% | 0.41% | 0.34% | 0.41% | 0.41% | 0.11% | 0.35% | 0.17%

HICP-Unem. | MSETrain | 0.03 | 005 | 003 | 036 | 021 | 027 031 | 003 | 035 | 013

I -ESI

ployment-ESI |\ APE Test | 2.67% | 2.83% | 215% | 1.07% | 3.71% | 2.29% 2.35% | 1.82% | 2.93% | 1.48%
MSE Test | 14.75 | 21.33 | 10.33 | 2.18 | 34.85 | 13.34 | 14.29 | 7.81 | 26.25 | 5.39

Source: own computations
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Table 17. The performance metrics for SVR model under different settings

Setting Metric BG RO SK SI LT Lv EE PL HU cz

MAPE Train | 0.39% | 0.32% | 0.24% | 0.41% | 0.43% | 0.43% | 0.46% | 0.32% | 0.42% | 0.45%
R MSE Train 0.30 0.24 0.20 0.32 0.35 0.45 0.57 0.22 0.34 0.79

Univariate

setting
MAPE Test | 0.74% | 0.35% | 0.59% | 0.42% | 0.49% | 0.41% | 0.97% | 0.18% | 0.60% | 0.52%
MSE Test 1.93 0.38 1.67 0.34 1.62 0.40 2.50 0.12 1.56 1.33
MAPE Train | 0.35% | 0.30% | 0.23% | 0.39% | 0.37% | 0.41% | 0.47% | 0.34% | 0.42% | 0.36%

HICP- MSE Train 0.25 0.20 0.20 0.31 0.34 0.43 0.62 0.19 0.34 0.76

Unemploy-

ment MAPE Test | 0.58% | 0.31% | 0.61% | 0.34% | 0.40% | 0.39% | 0.52% | 0.23% | 0.61% | 0.51%
MSE Test 1.63 0.33 1.94 0.27 0.75 0.40 1.02 0.18 1.65 1.42
MAPE Train | 0.34% | 0.26% | 0.33% | 0.41% | 0.37% | 0.45% | 0.44% | 0.32% | 0.35% | 0.36%
MSE Train 0.24 0.21 0.23 0.32 0.35 0.44 0.53 0.22 0.29 0.76

HICP-ESI
MAPE Test | 0.59% | 0.34% | 0.64% | 0.28% | 0.73% | 0.22% | 0.92% | 0.22% | 0.67% | 0.47%
MSE Test 1.88 0.39 1.58 0.25 2.39 0.15 2.23 0.14 1.55 1.25
MAPE Train | 0.34% | 0.26% | 0.32% | 0.39% | 0.40% | 0.45% | 0.46% | 0.31% | 0.44% | 0.35%

HICP-Un- MSE Train 0.24 0.20 0.22 0.31 0.30 0.43 0.52 0.19 0.36 0.76

employ-

ment-ESI MAPE Test | 0.59% | 0.34% | 0.64% | 0.34% | 0.68% | 0.27% | 0.97% | 0.25% | 0.64% | 0.49%
MSE Test 1.88 0.29 1.22 0.26 1.98 0.24 2.45 0.20 1.66 1.20

Source: own computations
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Table 18. The performance metrics for the LSTM model under different

settings
Setting Metric | BG | RO | SK sI LT | LV | EE | PL | HU | czZ
MAPE Train | 1.86% | 6.98% | 4.63% |5.13% |3.55% |5.24% | 7.75% |2.84% |2.60% |8.55%
o MSE Train | 5.6 | 74.36 | 22.30 | 34.33 | 15.68 | 48.71 | 60.94 | 9.47 | 12.25 104.85
Univariate
setting
MAPE Test |6.64% |0.58% | 0.89% |1.05% | 0.31% |0.43% |2.31% |0.79% |0.22% |2.99%
MSETest |89.33| 087 | 174 | 191 | 027 | 058 | 1413 | 147 | 027 | 21.53
MAPE Train | 1.50% |6.40% | 4.00 | 460 | 310 | 470 | 700 | 250 | 220 | 790
MSE Train | 4.20 | 61.17 | 18.00 | 28.00 | 12.50 | 41.00 | 53.00 | 7.60 | 10.00 | 90.00
HICP-Unem-
Ployment |\ PETest | 5.80 |0.54% | 0.85% | 1.16% | 0.33% |0.42%  2.51% | 075 |0.22% |2.52%
MSETest | 71.20 | 0.85| 160 | 170 | 025 | 050 | 11.00 | 1.30 | 0.22 | 17.00
MAPE Train | 1.40% | 0.85% | 7.1% |3.09% | 3.16% |3.08% |2.97% |3.19% | 3.2% |2.94%
MSE Train | 2.81 | 1.13 | 53.69 | 1912 | 23.88 | 1545 | 12.32 | 2547 | 2476 | 21.11
HICP-ESI
MAPE Test |2.55% | 0.10% | 6.43% |3.16% |3.22% |3.21% |3.06% |3.18% |3.22% |3.50%
MSE Test | 14.23 | 0.04 | 70.23 | 34.82 | 35.2 | 3513 | 31.99 | 3492 | 35.2 | 29.28
MAPE Train | 1.21% | 0.73% | 6.50% |0.95% |1.54% |2.03% |2.82% | 1.01% |1.82% |3.85%
HICP-Un- | MSETrain | 223 | 090 | 5001 | 254 | 322 | 540 | 656 130 | 221 | 12.32
employ-
ment-ESI | MAPE Test |3.50% | 0.31% | 5.55% |0.95% |0.45% |0.92% |4.21% |0.80% |0.93% | 4.50%
MSETest | 23.21 | 0.44 | 45.03%| 175 | 032 | 091 | 16.57 | 1.21% |1.04% | 25.25

Source: own computations

In the experiments reported, modern ML methods - particularly the LSTM network and

SVR - offer clear, practically meaningful improvements over the ARDL baselines in many

country X feature-set combinations. Overall, the LSTM often achieves the lowest out-of-sample

error in the univariate designs and several multivariate configurations, while SVR frequently

matches or slightly exceeds ARDL when unemployment or sentiment are used as predictors.

RFs, once properly tuned, also provide useful gains in various settings, especially when addi-

tional covariates are available. In summary, Tables 16-18 demonstrate that ML methods are not
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only competitive but also consistently enhance short-horizon HICP forecasting accuracy in our

panel.

Two facts in the results make the ML advantage particularly credible. First, the monthly ex-
periments use longer training sequences (nearly two decades), which gives data-hungry models
like LSTM the sample size they need to learn nonlinear lag structures - the observed reductions
in test error therefore reflect genuine pattern learning rather than chance. Second, improve-
ments are not limited to in-sample fit: in many country-setting combinations, the test MAPEs
are lower (or only modestly higher) than training MAPEs for ML methods when unemployment
is included, indicating stable generalization rather than pure overfitting. In the HICP-Unem-
ployment configuration, SVR and LSTM both show consistent test MAPE reductions rela-
tive to ARDL (SVR test MAPE often = 0.20-0.6%, LSTM often = 0.5-1.5%), and RF shows
meaningful gains after tuning in several countries as well (test MAPEs commonly falling into

the low single digits).

In summary, the strong agreement between Romania’s quarterly results and the full CEE
monthly LSTM outcomes, along with the gap compared to ARDL benchmarks, confirms that
these deep-learning models reliably generalize across different frequencies and economies, pro-

viding a clear forecasting benefit for CEE countries.

5. Conclusions

This study provides a valuable contribution to empirical forecasting. It shows the effectiveness
of using LSTM networks for inflation forecasting, consistent with traditional economic theo-
ry. Additionally, including sentiment analysis results in ARDL models can improve forecast
accuracy. Overall, these findings indicate that multivariate approaches, especially those incor-
porating sentiment indices and unemployment rates, significantly enhance forecast precision.
The use of TimeSeriesSplit for cross-validation maintains the temporal integrity of our mod-
els, offering reliable performance assessments. These results suggest that advanced machine
learning techniques, combined with comprehensive data inputs, can greatly improve economic

forecasting capabilities.

Despite the importance of these empirical findings, the research has several limitations
that highlight areas for future study. First, a key limitation of this paper is its focus on a short
forecasting horizon - covering four quarters with high inflation in Romania due to the interna-
tional and domestic economic context, and three months for CEE countries. The study aimed
to analyze short-term periods of high inflation under extreme economic conditions. This situa-

tion occurs over brief periods because of interventions by the central bank. Specifically, the Na-
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tional Bank of Romania managed inflation by gradually raising interest rates, making the high
inflation episode temporary. Therefore, applying the proposed forecasting methods over a short
horizon is justified, and they could be useful in similar future scenarios. From this perspective,
the paper deserves praise for employing quantitative methods that are well-suited to the eco-
nomic context of the countries analyzed. The short-term forecasting horizon is closely relat-
ed to the longer-term transmission of monetary policy. This process is complex and involves
a time lag, which affects how short-term interest rates influence economic growth and inflation.
The actual transmission occurs through various channels, including, besides the interest rate
channel, the exchange rate channel and the asset price channel, all of which play important
roles. Changes in the exchange rate and asset prices immediately impact the inflation rate once
the transmission cycle ends. This process typically spans about 12-18 months, which is much

longer than the forecasting horizon considered in this paper.

Second, the study is limited to CEE countries because they experienced the highest infla-
tion in the EU, and it was conducted within a limited time frame. We considered limited com-
puting resources when choosing the number of countries to include. Nevertheless, optimizing
the LSTM took more than a week of computing time on a computer with an Intel(R) Xeon(R)
Gold 6226R CPU @ 2.90GHz processor, 16 cores, and 192 GB of RAM.

Third, the methodology is limited to a few methods and economic variables. Besides
the economic variables mentioned earlier, there are influences that are less certain and hard
to quantify but also play a significant role. This could include the structure of the consumer
basket, which, according to the harmonized index of consumer prices, changes in EU countries
roughly every five years. Since inflation rates can be accelerated by various influences within
months, reach a peak, and then gradually decline, the structure of the consumer basket may al-
ready seem inappropriate and outdated. It is also important to consider political influences like
the political cycle, natural factors, and others. These limitations, by their nature, could not and

have not been addressed in the paper.

Fourth, the machine learning techniques are usually employed on long time series, but
in this case, the series are quite short due to limited data availability in inflation reports, which
encourages overfitting. Therefore, future studies should consider other types of econometric
models and machine learning techniques, longer time series, and more explanatory variables
to predict inflation (such as various types of interest rates used by central banks to control infla-
tion). Additionally, future research could also include more countries with similar characteris-

tics and a longer forecasting horizon.
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Appendix A

Figure A1. ESI for CEE countries
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Figure A2. Unemployment rates (%) for CEE countries
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Figure A3. HICP (index, 2015=100), Sentiment index, and Unemployment (%)
for Romania - quarterly data
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Table A1. Descriptive statistics for quarterly Unemployment rates and HICP
(2015=100) data series for Romania

Descriptive statistics Unemployment (%) HICP

Average 6.68 104.92
Lowest value 3.7 98.3
Median 6.05 104.82
Highest value 9.3 116.37
Standard dev. 1.77 3.78
Jarque-Bera stat 6.93 17.03

Source: own computations

Table A2. CEE countries

Country Abbreviation
Bulgaria BG
Romania RO
Slovakia SK
Slovenia SI
Lithuania LT
Latvia Lv
Estonia EE
Poland PL
Hungary HU
Czechia cz
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Table A3. Descriptive statistics for monthly data for ESI for CEE countries

BG RO SK Si LT Lv EE PL HU cz
Average 99.70 | 98.66 | 98.52 | 99.14 | 100.11 | 98.60 | 98.07 | 100.94 | 99.60 | 98.37
Lowest value 54.9 577 49.1 61.3 60.9 60.9 69 49.6 67.2 64.2
Median 100.6 | 101.2 99.4 99.5 | 100.3 | 100.2 | 100.1 | 100.9 98.7 98
Highest value 1221 144 | 1235 | 116.5| 1182 | 1192 | 119.8 | 1219 | 121.2 | 1173
Standard dev. 10.30 9.52 | 10.51 | 1099 | 10.67 | 10.11 | 10.23 | 10.61 1.1 | 10.53
Jarque-Berastat | 22.34 | 64.02 | 12598 | 28.40 | 119.32 | 151.36 | 15.73 | 184.76 3.68 5.17

Source: own computations

Table A4. Descriptive statistics for monthly data for HICP (2015=100) for CEE

countries

BG RO SK sl LT LV EE PL HU cz
Average 103.30 | 101.92 | 101.78 | 104.07 | 105.65 |104.32 |104.56 |104.46 | 105.91 105.82
Lowest value 73.81 | 68.12 | 81.44 | 8435 | 73.29 | 69.88 | 70.73 | 80.40 @ 69.36 | 82.70
Median 100.99 | 99.38 |100.55 |100.28 |100.69 | 99.90 | 100.41 |100.50 [100.25 | 100
Highest value 138.99 | 152.96 | 128.98 | 145.18 | 151.95 |146.54 | 157.20 | 150.90 | 169.30 {152.90
Standard dev. 14.85 | 20.78 | 11.40 | 1564 | 20.34 | 18.41 | 21.80 | 1792 | 24.77 | 18.66
Jarque-Berastat | 25.18 | 17.62 | 2590 | 70.80 | 36.75 | 28.88 | 36.02 | 62.26 | 58.13 | 73.42

Source: own computations

Table A5. Descriptive statistics for monthly data for unemployment rates (%)
for CEE countries

BG RO SK SI LT Lv EE PL HU cz
Average 8.03 6.92 9.82 6.24 8.96 9.94 7.68 6.78 6.51 4.55
Lowest value 3.8 4.7 5 3.2 4 5.3 3.9 2.6 3 1.8
Median 7.1 6.5 10 5.6 7.6 8.3 6.7 6.9 6.1 4.3
Highest value 14.1 9.6 15 10.8 18.3 20.8 19.4 16 11.4 79
Standard dev. 3.22 1.50 3.34 2.12 3.75 412 3.27 3.38 2.70 1.97
Jarque-Bera stat 20.70 | 24.85 |24.25 | 19.89 |36.29 | 55.01 | 140.96 | 12.71 | 23.03 | 24.82
Source: own computations
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Table A6. DM and the Wilcoxon tests for ARDL/RF/SVR/LSTM versus naive forecast

Scenario Horizon Method Mean(d) | DM stat p (onzﬂided) p (Y)v::f:izr;d)
ARDL 0.0029 0.2399 0.5947 0.6011
1 RF 0.0543 3.1106 0.9989 0.9992
SVR 0.0162 1.2308 0.8901 0.8872
LSTM 0.0932 3.4888 0.9997 0.9985
ARDL -0.4607 | -6.6451 0.0000 0.0000
:?i'::‘:":“e 3 RF -0.4080 | -6.4946 0.0000 0.0000
SVR -0.4658 | -6.9860 0.0000 0.0000
LSTM -0.3966 | -5.5153 0.0000 0.0000
ARDL -1.2506 | -7.3427 0.0000 0.0000
6 RF 11448 | -6.9299 0.0000 0.0000
SVR -1.2404 -7.3811 0.0000 0.0000
LSTM -11396 | -6.8622 0.0000 0.0000
ARDL 0.0014 0.1237 0.5492 0.5398
1 RF 0.1994 5.6820 1.0000 1.0000
SVR 0.2319 5.9683 1.0000 1.0000
LSTM 0.5050 7.7522 1.0000 1.0000
ARDL -0.5450 | -6.8334 0.0000 0.0000
High RF 0.0170 0.2337 0.5923 0.1434
persistence 3
SVR -0.3223 | -5.9496 0.0000 0.0000
LSTM -0.0302 | -0.3245 0.3730 0.4442
ARDL -1.4910 -7.5974 0.0000 0.0000
RF -0.5193 | -3.5409 0.0002 0.0002
° SVR 11520 | -6.8669 0.0000 0.0000
LSTM -0.9459 | -4.7525 0.0000 0.0000
ARDL -0.1819 | -3.3872 0.0004 0.0000
, RF -0.1701 -3.1801 0.0009 0.0000
SVR -0.1872 | -3.6338 0.0002 0.0001
LSTM 0.1831 2.0641 0.9798 0.9243
ARDL -0.3499 | -5.7643 0.0000 0.0000
MA RF -0.2688 | -4.3489 0.0000 0.0000
noninvertible 3 SVR -0.3659 | -6.1720 0.0000 0.0000
LSTM -0.0249 | -0.3079 0.3792 0.2693
ARDL -0.4799 | -4.7069 0.0000 0.0000
RF -0.5080 | -5.4918 0.0000 0.0000
° SVR -0.5377 | -5.5876 0.0000 0.0000
LSTM -0.1384 -1.2111 0.1136 0.2381
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Scenario Horizon Method Mean(d) | DM stat p (onzﬂided) p (‘g'i‘lecf::;d)
ARDL -0.1054 | -3.4225 0.0004 0.0004
: RF 0.0141 0.3733 0.6453 0.2139
SVR -0.1148 | -3.4592 0.0003 0.0001
LSTM 0.2521 2.5389 0.9941 0.9261
ARDL 11974 | -7.8564 0.0000 0.0000
Non linear 5 RF -1.0601 -7.3643 0.0000 0.0000
regime SVR 11944 | -7.8352 0.0000 0.0000
LSTM -0.9132 | -5.0088 0.0000 0.0000
ARDL -2.8885 | -8.3053 0.0000 0.0000
RF -2.7508 | -8.0069 0.0000 0.0000
° SVR -2.8445 | -8.1756 0.0000 0.0000
LSTM 24743 | -6.6978 0.0000 0.0000
ARDL 0.0097 0.7550 0.7744 0.7319
RF 0.0625 2.9599 0.9983 0.9837
1 SVR 0.0190 1.3919 0.9172 0.9489
LSTM 0.0809 3.0657 0.9988 0.9814
ARDL -0.4556 | -6.4634 0.0000 0.0000
Structural RF -0.4116 | -6.2130 0.0000 0.0000
break 3 SVR -0.4630 | -6.7251 0.0000 0.0000
LSTM -0.3803 | -5.1908 0.0000 0.0000
ARDL -1.2531 -7.3477 0.0000 0.0000
RF 11257 | -6.7087 0.0000 0.0000
o SVR -1.2411 -7.3415 0.0000 0.0000
LSTM -1.0934 | -6.3340 0.0000 0.0000

Source: own computations
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Table A7. Win rates for different simulation scenarios and their 95% Cls

Scenario Horizon Method Win_rate Win_rate_ci_low Win_rate_ci_high
ARDL 0.225 0.170 0.285
LSTM 0.200 0.145 0.255
1 Naive 0.235 0.180 0.295
RF 0.165 0.115 0.220
SVR 0.175 0.125 0.230
ARDL 0.215 0.155 0.275
LSTM 0.230 0.175 0.290
Baseline linear 3 Naive 0.190 0.140 0.245
RF 0.205 0.145 0.260
SVR 0.160 0.110 0.215
ARDL 0.265 0.205 0.325
LSTM 0.230 0.170 0.285
6 Naive 0.160 0.110 0.210
RF 0.185 0.135 0.240
SVR 0.160 0.110 0.210
ARDL 0.295 0.235 0.360
LSTM 0.140 0.095 0.190
1 Naive 0.255 0.195 0.320
RF 0.180 0.130 0.235
SVR 0.130 0.085 0.180
ARDL 0.310 0.250 0.370
LSTM 0.185 0.130 0.240
High persistence 3 Naive 0.120 0.075 0.165
RF 0.205 0.150 0.265
SVR 0.180 0.130 0.235
ARDL 0.390 0.320 0.460
LSTM 0.170 0.115 0.225
6 Naive 0.110 0.070 0.155
RF 0.145 0.100 0.195
SVR 0.185 0.130 0.240
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Scenario Horizon Method Win_rate Win_rate_ci_low Win_rate_ci_high
ARDL 0.200 0.145 0.260
LSTM 0.215 0.160 0.275
1 Naive 0.195 0.140 0.250
RF 0.190 0.135 0.250
SVR 0.200 0.145 0.255
ARDL 0.230 0.170 0.290
LSTM 0.210 0.155 0.265
MA noninvertible 3 Naive 0.200 0.145 0.255
RF 0.185 0.135 0.240
SVR 0.175 0.125 0.230
ARDL 0.195 0.140 0.255
LSTM 0.220 0.160 0.280
6 Naive 0.195 0.145 0.250
RF 0.250 0.190 0.310
SVR 0.140 0.095 0.190
ARDL 0.225 0.170 0.285
LSTM 0.170 0.120 0.225
1 Naive 0.180 0.130 0.235
RF 0.175 0.125 0.230
SVR 0.250 0.190 0.310
ARDL 0.195 0.140 0.250
LSTM 0.245 0.185 0.305
Non linear regime 3 Naive 0.175 0.125 0.230
RF 0.170 0.120 0.225
SVR 0.215 0.160 0.275
ARDL 0.185 0.135 0.235
LSTM 0.230 0.175 0.290
6 Naive 0.175 0.125 0.225
RF 0.230 0.175 0.290
SVR 0.180 0.130 0.235
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Scenario Horizon Method Win_rate Win_rate_ci_low Win_rate_ci_high
ARDL 0.215 0.160 0.270
LSTM 0.200 0.145 0.255
1 Naive 0.225 0.170 0.285
RF 0.205 0.150 0.265
SVR 0.155 0.105 0.205
ARDL 0.185 0.130 0.240
LSTM 0.255 0.200 0.315
Structural break 3 Naive 0.170 0.120 0.225
RF 0.230 0.175 0.290
SVR 0.160 0.110 0.215
ARDL 0.195 0.145 0.250
LSTM 0.260 0.200 0.320
6 Naive 0.175 0.125 0.230
RF 0.195 0.140 0.250
SVR 0.175 0.120 0.230

Source: own computations
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Table A8. The optimal values for the hyperparameters of the RF method

Values of the hyperparameters for

Multivariate setting

Country Hyperparameters
Univariate
setting HICP- HICP-ESI HICP-Unemploy-
Unemployment ment-ESI
n_estimators 150 50 50 150
BG max_depth None 5 10 None
min_samples_split 2 2 2 2
max_features 0.9 0.7 0.9 0.7
n_estimators 200 100 50 50
RO max_depth 10 10 10 None
min_samples_split 2 2 2 2
max_features 1.0 0.9 0.5 0.9
n_estimators 200 50 100 50
SK max_depth 5 10 10 None
min_samples_split 2 2 2 2
max_features 0.9 0.9 0.7 1.0
n_estimators 75 50 100 75
S1 max_depth 5 5 5 None
min_samples_split 10 10 10 12
max_features 1.0 1.0 1.0 0.7
n_estimators 200 75 75 75
LT max_depth 5 5 5 5
min_samples_split 2 2 2 2
max_features 1.0 1.0 0.7 0.5
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n_estimators 50 100 200 100
LV max_depth None 5 5 5
min_samples_split 10 5 10 2
max_features 1.0 0.9 1.0 0.5
n_estimators 100 150 200 200
EE max_depth 10 10 None 5
min_samples_split 2 2 10 2
max_features 0.9 1.0 1.0 1.0
n_estimators 200 150 150 150
PL max_depth None 10 5 None
min_samples_split 2 2 2 2
max_features 1.0 1.0 0.5 0.5
n_estimators 50 75 50 75
HU max_depth 5 10 5 5
min_samples_split 2 2 2 2
max_features 0.5 0.9 1.0 0.5
n_estimators 150 50 50 75
cz max_depth 10 10 None None
min_samples_split 2 2 2 2
max_features 0.5 0.9 0.9 1.0

Source: own computations
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Table A9. The optimal values for the hyperparameters of the SVR method

Values of the hyperparameters for

Multivariate setting

Country Hyperparameters | ynivariate
setting Uner:r:lcop;ment HICP-ESI Unempll-lc:;rl:ent-ESI
C 3 1 8 7
coef0 0.5 1.0 0.01 0.01
BG degree 2 1 1 1
epsilon 0.01 0.01 0.01 0.01
gamma 0.4 0.7 0.8 0.3
kernel poly poly poly poly
C 1 9 7 6
coef0 2.5 25 2.5 2.0
RO degree 2 1 1 1
epsilon 0.01 0.01 0.01 0.01
gamma 0.6 4 0.9 0.9
kernel poly poly poly poly
C 5 9 9 2
coef0 0.5 0.5 0.5 1.0
sK degree 1 1 1 1
epsilon 0.01 0.01 0.01 0.01
gamma 0.9 0.2 0.8 0.7
kernel poly poly poly poly
C 8 2 4 7
coef0 0.5 0.5 0.01 4
S| degree 1 1 1 1
epsilon 0 0.01 0.01 0.01
gamma 0.8 0.9 0.1 0.6
kernel poly poly poly poly
C 9 4 7 5
coef0 0.5 0.5 1.0 1.0
- degree 1 1 1 1
epsilon 0.01 0.01 0.01 0.01
gamma 0.6 0.8 0.6 0.8
kernel poly poly poly poly
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C 9 9 6 3
coef0 0.01 0.01 2.0 0.01
degree 1 1 1 1
Lv
epsilon 0.01 0.01 0.01 0.01
gamma 0.9 0.4 0.9 0.6
kernel poly poly poly poly
C 9 8 9 9
coef0 0.5 2.5 2.0 2.0
Es degree 1 1 1 1
epsilon 0.01 0.01 0.01 0.01
gamma 0.9 0.7 0.5 0.4
kernel poly poly poly poly
C 7 4 2 6
coef0 2.0 2.0 25 1.0
pL degree 1 1 1 1
epsilon 0.01 0.01 0.01 0.01
gamma 0.8 0.7 0.2 0.9
kernel poly poly poly poly
C 3 9 9 2
coef0 1.0 0.01 0.5 1.0
degree 2 1 1 1
HU epsilon 0.01 0.01 0.01 0.01
gamma 0.9 0.5 0.6 0.6
kernel poly poly poly Poly
C 9 9 3 6
coef0 0.01 0.01 1.0 0.5
z degree 1 1 1 1
epsilon 0.01 0.01 0.01 0.01
gamma 0.9 0.9 0.1 0.5
kernel poly poly poly poly

Source: own computations
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Table A10. The optimal values for the hyperparameters of the LSTM method

Values of the hyperparameters for
Country Hyperparameters Univariate Multivariate setting
setting HICP- HICP-ESI HICP-Unemploy-
Unemployment ment-ESI

batch_size 8 1 1 8

Dropout layer 1 0.2 0.1 0.1 0.1

Dropout layer 2 0.0 0.1 0.1 0.1

L2 reg 0.0 0.2 0.1 0.2
BG t_d t

recurrent_dropou 0.1 0.2 0.1 0.0

layer 1

recurrent_dropout 01 01 04 01

layer 1

units 128 512 512 512

batch_size 1 1 1 1

Dropout layer 1 0.2 0.1 0.2 0.1

Dropout layer 2 0.1 0.1 0.2 0.0

L2 reg 0.1 0.2 0.2 0.2
RO t_d t

recurrent_dropou 0.1 0.2 0.0 0.2

layer 1

recurrent_dropout 01 0.2 01 01

layer 1

units 128 512 128 512

batch_size 1 1 1 1

Dropout layer 1 0.2 0.1 0.1 0.1

Dropout layer 2 0.1 0.0 0.2 0.2

L2 reg 0.1 0.0 0.2 0.2
SK t_d t

recurrent_dropou 0. 0.0 0.2 0.2

layer 1

recurrent_dropout 0 0.2 01 01

layer 1

units 128 512 512 512
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batch_size 1 8 4 1

Dropout layer 1 0.2 0.1 0.2 0.1

Dropout layer 2 0.2 0.1 0.1 0.1

L2 reg 0.1 0.2 0.1 0.2
St t_d t

recurrent_dropou 01 0.0 04 01

layer 1

recurrent_dropout 01 02 04 04

layer 1

units 128 512 512 512

batch_size 1 1 1 1

Dropout layer 1 0.1 0.0 0.1 0.2

Dropout layer 2 0.2 0.2 0.1 0.0

L2 reg 0.0 0.1 0.1 0.1
LT t_d t

recurrent_dropou 0.1 0.2 0.1 0.1

layer 1

recurrent_dropout 0.0 01 0.2 01

layer 1

units 512 512 512 512

batch_size 1 1 1 1

Dropout layer 1 0.0 0.1 0.1 0.1

Dropout layer 2 0.2 0.1 0.0 0.1

L2 reg 0.2 0.1 0.1 0.2
Lv t_d t

recurrent_dropou 0.0 0.2 01 01

layer 1

recurrent_dropout 0.2 0.2 0.2 01

layer 1

units 512 512 512 512

batch_size 1 1 1 1

Dropout layer 1 0.1 0.1 0.1 0.2

Dropout layer 2 0.2 0.1 0.2 0.2

L2 reg 0.0 0.1 0.1 0.1
EE t_d t

recurrent_dropou 0.1 0.2 0.2 0.1

layer 1

recurrent_dropout 0.2 0.2 0.2 04

layer 1

units 512 512 512 512
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batch_size 1 1 1 1

Dropout layer 1 0.0 0.1 0.0 0.1

Dropout layer 2 0.0 0.1 0.1 0.1

L2 reg 0.1 0.2 0.2 0.2
PL t_d t

recurrent_dropou 0.2 01 0.2 01

layer 1

recurrent_dropout 0.2 0.2 0.2 04

layer 1

units 512 512 512 512

batch_size 1 1 1 1

Dropout layer 1 0.1 0.2 0.1 0.2

Dropout layer 2 0.1 0.0 0.2 0.0

L2 reg 0.1 0.0 0.2 0.2
HU t_d t

recurrent_dropou 0.1 0.1 0.2 0.0

layer 1

recurrent_dropout 01 0.2 01 01

layer 1

units 512 512 512 512

batch_size 1 1 1 8

Dropout layer 1 0.2 0.1 0.2 0.2

Dropout layer 2 0.2 0.1 0.1 0.1

L2 reg 0.0 0.1 0.1 0.1
z t_d t

recurrent_dropou 0.1 0.2 0.2 0.1

layer 1

recurrent_dropout 0.2 0.0 0.0 0.2

layer 1

units 512 512 512 512

Source: own computations
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