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Abstract: 

Following the COVID-19 pandemic, Romania and other Central and Eastern European (CEE) 
countries faced some of the highest inflation rates in the European Union, creating a pressing 
need for accurate short-term forecasts to guide monetary policy. This study compares mod-
ern machine learning (ML) methods - Long Short-Term Memory (LSTM) neural networks, 
Random Forests (RF) and Support Vector Regression (SVR) - with traditional Autoregressive 
Distributed Lag (ARDL) models in  forecasting Harmonised Index of Consumer Prices. Us-
ing quarterly data for Romania (2006Q1–2023Q4) and monthly data for nine CEE economies 
(2006M1–2025M3), we incorporate unemployment and sentiment indicators derived from 
the  Romanian Central Bank reports and the  European Commission’s Economic Sentiment 
Indicator (ESI). We further evaluate model performance through simulation experiments that 
include high persistence, moving-average non-invertibility, nonlinear regimes, and structural 
breaks. Across both empirical and LSTM and SVR models - they frequently deliver lower 
forecast errors than ARDL, with LSTM achieving up to 53% reductions in mean squared error 
relative to naïve benchmarks. However, ARDL remains competitive when sentiment indices 

15 MANUÁL VYSOKÉ ŠKOLY EKONOMICKÉ V PRAZE

LOGOTYP 
S NÁZVEM
ZÁKLADNÍ
PROVEDENÍ

1/10

Logotyp je zkonstruován tak, aby bylo zaručeno 
jeho nejsnadnější použití v jednotném grafickém 
a komunikačním stylu vysoké školy a zároveň 
v identifikovatelnosti jednotlivých fakult v rámci 
struktury VŠE, při zachování všech technologic-
kých možností typografických a estetických 
pravidel.

Logotyp se smí používat pouze z originálního 
vzoru, který je dostupný jako příloha tohoto
manuálu, případně z dat poskytnutých oddělením 
Public Relations VŠE společně s předchozím sou-
hlasem s použitím. Používání jiných podkladů než 
originálních je nepřípustné.

Základní pozitivní provedení logotypu je v kor-
porátní černé barvě (100 % K), dále je upřesněno 
v kodifikaci barevnosti v kapitole 2/01.

Nejlépe znak vynikne na bílé podkladové ploše, 
která je také při aplikaci znaku preferována.

Správný způsob aplikace znaku je definován pra-
vidly uvedenými v tomto manuálu a je zakázáno 
ho aplikovat v rozporu s ním.

VSE_2_logo_cb_cmyk
VSE_4_EN_logo_bw_cmyk

https://pep.vse.cz/=en
https://orcid.org/0000-0001-6987-5137
https://orcid.org/0000-0002-6124-2172
https://orcid.org/0000-0002-1428-4038
mailto:bogdan.oancea@faa.unibuc.ro
https://www.vse.cz/english/


Prague Economic Papers, 2025, 34 (4), 495–558, https://doi.org/10.18267/j.pep.898 496

Bogdan Oancea, Mihaela Simionescu, Richard Pospisil

are the main predictor. These findings highlight that while advanced ML models can capture 
nonlinear dynamics and regime changes, traditional econometric tools still provide valuable 
robustness, particularly in sentiment-driven contexts. Overall, integrating ML, econometric ap-
proaches, and sentiment analysis offers a more reliable toolkit for short-horizon inflation fore-
casting under economic uncertainty.

Keywords: Inflation, Long Short-Term Memory neural networks, Random Forests, Support 
Vector Regression, Autoregressive Distributed Lag models.

JEL classification: C51, C53, E31

1.  Introduction

This paper investigates whether modern machine-learning (ML) methods, specifically Long 
Short-Term Memory neural networks (LSTM), Random Forests (RF), and Support Vector Re-
gression (SVR), can produce more accurate short-term inflation forecasts than traditional Au-
toregressive Distributed Lag (ARDL) models, especially during periods of high volatility and 
policy uncertainty. Focusing on Romania and the Central and Eastern European (CEE) econ-
omies after the  COVID-19 pandemic, we developed and compared forecasting models that 
incorporate macroeconomic variables such as Harmonised Indices of Consumer Prices (HICP) 
as a proxy for inflation and unemployment, along with sentiment indicators derived from cen-
tral-bank reports and the European Commission’s Economic Sentiment Indicator (ESI). Our 
results highlight the situations in which each approach performs best, provide practical advice 
for policymakers on  model choice, and emphasize the  importance of  combining traditional 
econometrics with advanced ML tools to improve real-time policy decisions.

Inflation in Romania has been a major concern in 2023, reaching double-digit levels due 
to  rising energy and food prices, supply chain disruptions caused by the pandemic, and in-
creased government spending. In the first quarter of 2024, Romania recorded the highest infla-
tion in the EU at 6.7% in March 2024. This economic situation underscores the need for accu-
rate forecasts.  Recent macro models for Romania show that fiscal transmission is delayed and 
history-dependent, with “memory” in income dynamics affecting short-run adjustment paths. 
This strengthens the  case for short-horizon inflation forecasts that accommodate distributed 
lags and nonlinearity (Panzaru, Belea, and Jianu, 2025).

Inflation forecasting is crucial for policymakers, economists, and financial advisors. Ac-
curate predictions of inflation can greatly influence monetary policy and economic decisions. 
When forecasting economic time series data, choosing the best algorithmic approach is essen-
tial for obtaining accurate predictions and strong performance. Two common methodologies 
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in this field are traditional econometric methods like autoregressive integrated moving average 
(ARIMA) models and machine learning (ML) techniques.

Econometric techniques have been widely used in analyzing and forecasting time series 
data because they effectively capture time and seasonal patterns. Additionally, ML techniques 
provide a more adaptable framework for representing interconnected dynamics and nonlinear 
relationships in sequential data. The choice between these models depends on various factors, 
such as the features of the time series, the complexity of the temporal patterns, and the primary 
goals of the forecasting task. While econometric methods often assume certain conditions like 
stationarity, machine learning models do not offer greater flexibility in explaining connected 
dynamics and nonlinear relationships in series.

This research assesses the effectiveness of three machine learning techniques - RF, LSTM, 
and SVR - for predicting HICP during 2023Q1 to 2023Q4, based on historical data from 2006 
to 2022 for Romania. The results are compared with traditional econometric methods, specif-
ically autoregressive distributed lag models (ARDL), which address endogeneity issues relat-
ed to the connection between inflation and unemployment in Romania. Romania was select-
ed because it experienced one of the highest rates of inflation in the European Union during 
the post-pandemic period. Additionally, to evaluate the broader applicability of  the findings, 
the analysis was extended to all CEE countries using monthly seasonally adjusted data from 
2006M1 to 2024M12, with a forecast horizon of three months: 2025M1 to 2025M3. The core 
research question examines whether machine learning methods can outperform econometric 
models in  short-term inflation forecasting within an  economically vulnerable context, char-
acterized by high. Inflation is modeled based on unemployment rates and a sentiment index 
derived from the National Bank’s quarterly reports for Romania and the ESI for other CEE 
countries. While the interest rate might better explain inflation since central banks use it to con-
trol prices, it is not included here because the National Bank of Romania promotes a self-reg-
ulating market and typically maintains stable interest rates, with only significant adjustments 
in extreme situations. 

On  the other hand, according to  the Phillips curve theory, there is an  indirect relation-
ship between inflation and unemployment. When unemployment rates are low, inflation tends 
to be high. The  theory suggests that in a strong economy with low unemployment, workers 
have more purchasing power and can demand higher wages. This can lead to increased prices, 
which result in inflation. This describes the current situation of the Romanian economy. Ahead 
of the 2024/2025 elections, the government has announced a salary increase, including an in-
crease in the minimum wage. Additionally, recent employee protests driven by social tensions 
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in recent years have put pressure on the labor market and linked it more closely with inflation. 

The novelty of this study lies in constructing the most appropriate models and identifying 
the best forecasting method for a  short-term horizon characterized by high inflation and for 
a country that gradually increased interest rates to address the phenomenon. 

Additionally, this study investigates the ability of  sentiment techniques based on natu-
ral language processing (NLP) to analyze large volumes of  text provided by official experts 
for improving inflation forecasts within specific spatial and temporal frameworks. Economic 
sentiment, which reflects the overall mood of the economy and future expectations, is a key 
indicator in macroeconomics. It is relevant across various sectors - such as trade, services, and 
industry - as well as for managers and investors in financial markets, including commodities 
and stocks. In mainstream economic thought, the aggregate confidence indicator, often called 
the Economic Sentiment Indicator (ESI) or Basic Index, combines both business and consumer 
confidence into a single measure.

The sentiment analysis remains an underexplored research area with real potential to en-
hance prediction accuracy (Dang et al., 2025; Eugster and Uhl, 2024), and the use of NLP falls 
under the category of modern artificial intelligence techniques. Additionally, this pioneering 
research conducted in Romania uses complex machine learning techniques to forecast inflation 
over short-term horizons and during periods of high inflation that could not last long due to cen-
tral bank interventions.  

The  inflationary period affecting all developed countries after the Covid-19 pandemic, 
especially many EU economies, calls for new and advanced methods of inflation forecasting. 
Achieving a high level of price stability is the main goal of central banks (Stock and Watson, 
1999). As a  result, inflation forecasting is a key starting point for inflation targeting in cen-
tral bank monetary policy. Besides central banks, commercial banks also forecast inflation 
to estimate the prices of their resources and assets in the short and medium term (Hong et al., 
2024). Additionally, inflation forecasting interests’ academia and supranational institutions such 
as the International Monetary Fund, the World Bank, and others. Nominal output data and fore-
cast comments are primary sources for rational decision-making by consumers, households, 
and companies (Liu et al., 2024).

Most studies and sources on inflation forecasting primarily predict inflation trends in iso-
lation without thoroughly examining the interrelationships among economic variables. Many 
forecasts also focus on longer economic cycles that could be significantly influenced by com-
mon monetary and fiscal policy tools. Additionally, non-economic factors such as pandemics, 
international events, wars, and others are increasingly recognized as important (Groen et al., 
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2012). This complexity makes inflation forecasting more challenging and requires reliance 
on shorter observation periods (Fulton and Hubrich, 2021). Furthermore, the results and recom-
mendations from inflation forecasts tend to have shorter time horizons and lower informational 
value (Eugster and Uhl, 2024).

A correct estimate of the future inflation rate is extremely important, even dominant, for 
the economy. The inflation rate is directly related to the level of short-term interest rates, and 
thus directly affects the  prices of  assets, deposits, mortgages, debts, and more (Grothe and 
Meyer, 2015). Broadly speaking, it influences the country’s economic performance, economic 
growth, tax collection, and the real value of wages and pensions.

Most of  the  current inflation forecasting models are well documented in  many papers 
(Stock and Watson, 2003; Zhu et al., 2024), but they are not very suitable for today’s economic 
reality, which is burdened with high uncertainty. The research gap involves developing inflation 
forecasting methods using ML models, comparing their performances, and creating a meth-
od that achieves the highest possible accuracy (Medeiros et al., 2021). The presence of high 
inflation rates across all advanced economies highlights the need for a new approach to infla-
tion forecasting, one that incorporates models considering various economic and potential new 
non-economic indicators (Benett and Owyang, 2022; Faust and Wright, 2013).

The paper follows the traditional structure by including a literature review, methodology, 
empirical results, and conclusions. All these sections contribute to the novelty of this research. 

2.  Literature review

In the era of inflation targeting since the 1990s, short-term inflation forecasts have become a vi-
tal input for central banks and economic policy (Rygh, 2025). This is especially true in Europe, 
where price stability is formally defined in terms of the Harmonised Index of Consumer Prices 
(HICP) and where continuously monitoring and predicting inflation is deemed “indispensa-
ble” for monetary strategy (Vicente, 2005). A rich literature has accordingly developed a range 
of forecasting approaches - from simple time-series extrapolations to structural economic mod-
els - to anticipate near-term inflation dynamics. These approaches and findings in Europe are 
often compared with those from other regions to distil general insights into inflation forecast 
performance.

Conventional econometric methods have long underpinned short-term inflation forecast-
ing. Univariate time-series models like ARIMA (and seasonal ARIMA) often provide robust 
benchmarks, sometimes matching or outperforming more complex specifications (Rygh, 2025). 
Multivariate models, such as Vector Autoregressions (VARs) that incorporate broader econom-
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ic information, and structural Phillips curve models linking inflation to measures of slack (un-
employment or output gaps), have been extensively applied. However, many studies find that 
these elaborate models do not consistently outperform simpler ones out of sample. For exam-
ple, traditional Phillips-curve forecasts frequently failed to beat naive predictions based on past 
inflation. More broadly, decades of research have documented the challenge of improving upon 
basic extrapolative benchmarks (random walks or autoregressive trends) in forecasting infla-
tion (Beck and Wolf, 2025). This has motivated ongoing refinements of classical models (e.g. 
Bayesian VARs or factor models) as researchers seek incremental gains in predictive accuracy.

Short-term inflation forecasting in Europe - typically expressed in terms of HICP remains 
challenging, with simple extrapolative benchmarks often difficult to  beat. A  comprehensive 
ECB assessment of Phillips-curve specifications from 1994 to 2018 finds that while some vari-
ants do outperform a univariate benchmark at times, gains are modest, and model performance 
is episodic. Allowing for a  time-varying inflation trend and carefully chosen slack measures 
helps, whereas adding external drivers generally does not improve out-of-sample accuracy. 
These results underscore why forecasters combine tools and emphasize short horizons (3–12 
months) where policy relevance is highest (Bańbura and Bobeica, 2020).  

Within traditional econometric approaches, a key European question is whether to fore-
cast aggregate HICP directly or to model and aggregate components. Recent ECB work com-
paring direct (“aggregate”) versus bottom-up (component) models reveal small average dif-
ferences overall, but notable short-horizon episodes where disaggregation proves beneficial. 
For example, at  h = 1month, relative RMSEs (component vs. aggregate; values < 1 favour 
component) were 0.53 for Italy and 0.38 for the Netherlands (i.e., component better), while by 
h = 12 months, relative RMSEs were near unity across the big five economies (e.g., 0.94–1.01). 
Density (probabilistic) scores often favour the aggregate route at most horizons, with statisti-
cally significant but small gains (Chalmovianský et al., 2020). 

The past decade has seen growing interest in ML methods for inflation forecasting, both 
in Europe and internationally. Techniques such as SVR (Zhang and Li, 2012), tree-based en-
sembles (random forests and boosting), and deep neural networks (especially LSTMs) have 
been applied to capture potential non-linearities and complex data patterns that traditional mod-
els might miss (Beck and Wolf, 2025).  In some cases, ML models have delivered improved 
accuracy: for example, studies using data-rich environments report that ensemble methods like 
random forests can outperform standard autoregressive or random-walk benchmarks in predict-
ing inflation. Nevertheless, the evidence is mixed. Advanced ML approaches do not consist-
ently dominate well-tuned econometric models, especially at short horizons. Recent research 
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finds that LSTM-based forecasts for both U.S. CPI and euro-area inflation achieved accuracy 
roughly comparable to simpler models (such as SARIMA or regularized regressions), offering 
at best marginal gains (Almosov and Andresen, 2023). Similarly, while SVR has shown prom-
ise in specific instances (outperforming neural networks or OLS in one CPI forecasting study), 
its advantages have not proven universal. Given the tendency of complex ML models to overfit 
and their relative lack of transparency, a notable trend is the rise of hybrid approaches - com-
bining machine learning with traditional techniques. For example, researchers have explored 
blending LSTM networks with feature selection or linear components and using regularized re-
gression (like LASSO) alongside non-linear learners, to improve interpretability and robustness 
(Rygh, 2025; Paranhos, 2025).

ML methods have also been incorporated recently into the European toolbox. An ECB 
Quantile Regression Forest (QRF) built on  60 Phillips-curve-inspired predictors delivered 
point-forecast RMSEs for euro-area headline/core inflation that are broadly comparable to insti-
tutional benchmarks at short horizons: for headline, RMSEs were 0.58 (QRF) vs. 0.47 (BMPE) 
at h = 3, 0.92 vs. 0.94 at h = 6; for core, 0.21 vs. 0.22 at h = 3, 0.36 vs. 0.38 at h = 6. Over 
the sample, the QRF tended to perform better for core than headline and showed competitive 
density forecasts against both linear BVAR combinations and survey densities. These results 
suggest non-linear methods can match state-of-the-art linear systems for short-run HICP fore-
casts, especially for core (Lenza et al., 2023).  

The  factors influencing short-term performance in  Europe align with macroeconomic 
theory and practice. In  the QRF, SHAP analysis emphasizes short-term interest rates (Euri-
bor 3-month), survey-based price expectations (consumer and industry), unemployment, gov-
ernment bond yields, building permits (as a measure of real activity), producer price indices, 
and negotiated wages as the top contributors at six-month horizons. In Phillips-curve models, 
time-varying inflation trends, filter-based output gaps, and various measures of labor market 
slack are important; meanwhile, adding external variables (such as  terms of  trade and com-
modity prices) did not consistently improve forecast accuracy in euro-area studies, likely due 
to their poor forecastability (Lenza et al., 2023).  

Comparative evidence beyond Europe shows similar trends. In the United States, data-rich 
ML models, especially RF, often reduce RMSE compared to  random-walk/AR benchmarks 
across different horizons, supporting their use alongside traditional models. Recent research 
on  “hedged random forests” reports RMSE and MAE ratios below 1 compared to  standard 
forests across multiple inflation measures and horizons, with many Diebold–Mariano tests in-
dicating significant improvements. Studies using disaggregated data in emerging markets like 
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Brazil show RMSE reductions of approximately 20-27% at several horizons. These findings, 
along with European results, suggest that while linear models are still effective, ML methods 
that can identify mild non-linearities and interactions improve short-term HICP/CPI forecasts 
- especially for core inflation (Medeiros et al., 2021; Beck and Wolf, 2025; Boaretto and Me-
deiros, 2023).

In summary, while most studies used econometric models to predict inflation, including 
popular examples like random walk, Dynamic Stochastic General Equilibrium (DSGE) mod-
els, various extensions of Vector Autoregressions (VAR), and other econometric model types 
(Petropoulos et al., 2022), only a few recent papers have explored modern forecasting methods 
such as ML techniques. As expected, these new methods aim to improve forecasting by focus-
ing on accuracy as the main measure of forecast performance. However, the potential of ML 
methods to yield more accurate predictions than traditional econometric models remain prom-
ising, and empirical evaluation is needed to verify this. Therefore, in this section, we introduce 
the ML techniques used in the study: RF, LSTM, and SVR. 

RF is a supervised ensemble learning method that constructs multiple decision trees and 
combines their predictions (Breiman, 2001). They are known for their robustness and strong 
performance in both classification and regression tasks. This algorithm trains numerous deci-
sion trees and then merges their predictions to make a final decision. This approach enhances 
predictive accuracy and helps prevent overfitting.

Each decision tree is created using a  random subset of  the  training data and a  random 
subset of features, which helps reduce overfitting and improve generalization. The final predic-
tion is made by a majority vote (for classification) or by averaging (for regression) the outputs 
of the individual trees.

The ability of RF to handle nonlinear relationships and noisy inputs makes it particularly 
suitable for a wide range of  real-world applications, including economics, finance, bioinfor-
matics, and remote sensing (Svoboda et  al., 2022; Wang and Liu, 2025; Zhou et  al., 2025; 
Raza et al., 2025). The algorithm’s parallelizability and scalability enable efficient computation 
on large datasets, making it feasible for applications even in domains with extensive data re-
sources, such as genomics and climate modeling (Cutler et al., 2007; Strobil et al., 2009; Kumu-
da and Panigrahy, 2025; Sevgin, 2025). However, RF is not immune to certain weaknesses and 
considerations. While RF generally delivers competitive performance across a range of tasks, 
its predictive accuracy may plateau or  diminish on  extremely imbalanced datasets or  those 
characterized by highly correlated features. Careful tuning of hyperparameters (number of trees 
and maximum tree depth) is crucial to maximize model performance and prevent overfitting 
(Cutler et al., 2007; Biau and Scornet, 2016).
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SVR extends the principles of Support Vector Machines to regression problems, aiming 
to find a function that approximates the data within a certain margin while keeping the model 
simple (Drucker et al., 1997). Unlike traditional regression methods that minimize prediction 
errors directly, SVR focuses on minimizing deviations outside a specified margin, called the ep-
silon-insensitive tube. This margin defines a range where prediction errors are acceptable, and 
deviations beyond them are penalized proportionally to their size. SVR achieves this by map-
ping input data into a higher-dimensional space using a kernel function and considering a hy-
perplane that maximizes the margin while minimizing errors. By adding a regularization term 
to the objective function, SVR balances maximizing margin width and minimizing prediction 
errors, resulting in a robust and generalizable regression model (Drucker et al., 1997; Smola 
and Scholkopf, 2004).

A key feature of SVR is its ability to handle non-linear relationships between input vari-
ables and target outputs through the use of kernel functions. By implicitly mapping data into 
a higher-dimensional feature space, SVR can identify more complex patterns and relationships 
that may be hidden in  the original input space. This flexibility allows SVR to perform well 
across various regression tasks, including time series forecasting, financial modeling, and bio-
informatics (Ngwaba, 2025; Lin et al., 2021). Additionally, SVR’s principle of structural risk 
minimization, which focuses on maximizing the margin while controlling model complexity, 
helps reduce the risk of overfitting and improves its ability to generalize to new data (Smola and 
Scholkopf, 2004; Vapnik, 1995).

Despite its versatility and effectiveness, SVR also has some limitations. The  choice 
of a specific kernel function and its associated parameters can influence SVR’s performance, 
requiring careful tuning to achieve the best results. Additionally, the computational cost of SVR 
increases with both the size of the training dataset and the dimensionality of the feature space, 
often making it less suitable for large-scale problems compared to simpler regression methods. 
Furthermore, the interpretability of SVR predictions can be difficult in high-dimensional spac-
es, which limits its use in applications where clear model insights are essential. Nonetheless, 
with proper parameter selection and regularization, SVR remains a valuable tool for regression 
tasks that need robustness to non-linearities and flexibility in model representation (Smola and 
Scholkpopf, 2004; Ito and Nakano, 2003; Basak et al., 2007). 

LSTM networks, a type of recurrent neural networks (RNNs) specifically designed to ad-
dress the vanishing gradient problem and to handle long-range connections in sequential data, 
have become important tools for time series prediction tasks (Hochreiter and Schmidhuber, 
1997). By leveraging their ability to incorporate long-range links and manage sequential data, 
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LSTM-based methods have achieved significant success across various fields, including eco-
nomics, finance, healthcare, and climate forecasting (Park and Yang, 2022; Saadauui and Rab-
bouch, 2024; Cissoko et al., 2025; Nitesh et al., 2023). 

Basic RNNs have difficulty learning from long sequences because of vanishing gradients. 
In contrast, LSTMs use a more sophisticated gating system that allows them to selectively add 
or remove information based on input signals. This system, which includes input, forget, and 
output gates, helps LSTMs learn and hold onto long-term dependencies while reducing the im-
pact of vanishing gradients (Hochreiter and Schnidhuber, 1997; Graves et al., 2009).

At the core of LSTM networks are memory cells that act as information carriers, equipped 
with self-loop connections to support the circulation of information over time. Each memory 
cell maintains a cell state, functioning like a conveyor belt along the sequence, and is controlled 
by three types of gates: the input, forget, and output gates. The input gate regulates the flow 
of new information into the cell state; the forget gate decides whether to retain or discard ex-
isting information; and the output gate filters the information passed to the next step or output 
layer. By combining these gates with non-linear activation functions, LSTMs can preserve and 
transmit important information across long sequences, enabling the learning of complex tem-
poral patterns and relationships (Graves et al., 2009; Gers et al., 2000).

The main advantage of LSTMs is their ability to model and predict sequences with vari-
able lengths and temporal dynamics. Unlike traditional fixed-length window methods, which 
require predefined segment sizes and often struggle with capturing long-range dependencies, 
LSTMs can dynamically adjust their memory cells to handle sequence tasks such as speech 
recognition, where utterance durations vary, and natural language processing, where sentence 
structures and lengths differ. Additionally, LSTMs can incorporate contextual information and 
semantic relationships within sequences, leading to coherent and relevant predictions in appli-
cations like language translation, sentiment analysis, and time series forecasting (Sutskever and 
Vinyals, 2014; Bahdanau et al., 2015).

LSTMs also face limitations and challenges. Training LSTM networks requires many cal-
culations, especially for large-scale data sets and complex architectures with many parameters. 
Additionally, LSTMs may encounter overfitting, particularly with small data sets or when noisy 
inputs are present. Overfitting can be mitigated through dropout and weight decay, which en-
hance generalization. However, with careful design of architecture, regularization, and training, 
LSTMs remain a versatile and strong tool for modeling sequential data and capturing complex 
temporal connections in various tasks (Salton and Kelleher, 2019; Mienye et al., 2024; Srivas-
tava et al., 2014; Zaremba et al., 2014).
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All three methods are used to produce short-term inflation forecasts for Romania and other 
CEE countries, and these predictions are compared to those from ARDL models. The findings 
could guide future forecasts in similar economic settings.

Specifically, we intended to check the following hypotheses:

H1. 	 (Short Horizon): ML models with macro covariates (unemployment rate, sentiment index/
ESI) reduce RMSE/MAPE compared to ARDL baselines for HICP short-horizon forecasts 
(1-3 steps). 

H2. 	 (Sentiment-only): When sentiment is the sole extra covariate, ARDL remains competitive 
with ML. 

H3. 	 (Data-generating conditions): Under MA non-invertibility or regime shifts, ML methods 
(LSTM and/or SVR) show larger gains.

3.  Materials and Methods

A short description of the datasets and methods is given below. 

The quarterly data used for Romania cover the period 2006Q1-2023Q4 (forecasts made for 
2023Q1-2023Q4) and refer to the following indicators:

Q1. 	 Harmonized Index of Consumer Prices (HICP) as a proxy for inflation. We used the quar-
terly HICP data provided by Eurostat. 

Q2. 	 Sentiment index. Derived from textual data sources (abstracts of  Inflation Reports re-
leased by the  National Bank of  Romania), calculated using NLP techniques in  Intelli-
Docker to quantify economic sentiment. 

Q3. 	 Unemployment rate. Collected from official statistics sources (Romanian National Insti-
tute of Statistics), it provides a vital indicator of economic health.

The monthly data for the CEE countries in the sample (Romania, Slovakia, Slovenia, Lith-
uania, Latvia, Estonia, Poland, Hungary, Czechia) cover the period from 2006M1 to 2025M03 
(with forecasts for 2025M1 to 2025M03) and pertain to the following indicators:

M1. Harmonized Index of Consumer Prices (HICP) with monthly frequency provided by Eu-
rostat. 

M2. Unemployment rate provided by Eurostat.
M3. European Commission’s Economic Sentiment Indicator (ESI). It is provided by Eurostat 

for all CEE countries and reflects confidence in the economic outlook of consumers and 
businesses.
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Thus, we forecast HICP index level (2015 = 100), and we report short-horizon rates only 
in month-over-month (MoM) or quarter-over-quarter (QoQ) terms: 

πMoMt = 

 8 

parameters. Additionally, LSTMs may encounter overfitting, particularly with small data sets 
or when noisy inputs are present. Overfitting can be mitigated through dropout and weight 
decay, which enhance generalization. However, with careful design of architecture, 
regularization, and training, LSTMs remain a versatile and strong tool for modeling sequential 
data and capturing complex temporal connections in various tasks (Salton and Kelleher, 2019; 
Mienye et al., 2024; Srivastava et al., 2014; Zaremba et al., 2014). 
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3. Materials and Methods 
 
A short description of the datasets and methods is given below.  

The quarterly data used for Romania cover the period 2006Q1-2023Q4 (forecasts made 
for 2023Q1-2023Q4) and refer to the following indicators: 
Q1. Harmonized Index of Consumer Prices (HICP) as a proxy for inflation. We used the 
quarterly HICP data provided by Eurostat.  
Q2. Sentiment index. Derived from textual data sources (abstracts of Inflation Reports released 
by the National Bank of Romania), calculated using NLP techniques in IntelliDocker to 
quantify economic sentiment.  
Q3. Unemployment rate. Collected from official statistics sources (Romanian National Institute 
of Statistics), it provides a vital indicator of economic health. 
 

The monthly data for the CEE countries in the sample (Romania, Slovakia, Slovenia, 
Lithuania, Latvia, Estonia, Poland, Hungary, Czechia) cover the period from 2006M1 to 
2025M03 (with forecasts for 2025M1 to 2025M03) and pertain to the following indicators: 
 
M1. Harmonized Index of Consumer Prices (HICP) with monthly frequency provided by 
Eurostat.  
M2. Unemployment rate provided by Eurostat. 
M3. European Commission’s Economic Sentiment Indicator (ESI). It is provided by Eurostat 
for all CEE countries and reflects confidence in the economic outlook of consumers and 
businesses. 
 

Thus, we forecast HICP index level (2015 = 100), and we report short-horizon rates 
only in month-over-month (MoM) or quarter-over-quarter (QoQ) terms: πMoMt =
100x ( HICPt

HICPt−1 − 1), πQoQt = 100x ( HICPt
HICPt−1 − 1). We do not report year-over-year rates. 

First, we will provide some technical details on calculating the sentiment index for 
Romania. Using document classification and RNN, sentiment analysis produces indexes based 
on the sentiment (positive, negative, neutral) associated with words in a text. This involves 

. We do  not report year-over-year 
rates.

First, we will provide some technical details on calculating the sentiment index for Ro-
mania. Using document classification and RNN, sentiment analysis produces indexes based 
on  the  sentiment (positive, negative, neutral) associated with words in a  text. This involves 
scoring words as positive (+1), negative (-1), or neutral (0), summing these scores, and nor-
malizing the  results to  a  scale between 0 and 1. Although Clements and Reade (2020) also 
used a system of increments and decrements, our methodology introduces automated sentiment 
index computation via IntelliDocker and expands the analysis to cover the entire Romanian 
dictionary, unlike their 3,000-word limit. The evolution of the sentiment index (together with 
the HICP and unemployment rate) is shown in the Appendix Figure A3, showing successive 
increases and decreases. When we tested the generalizability of the results to CEE countries, we 
used the standard ESI calculated by Eurostat. 

Second, we will provide some details on the similar and different characteristics of the sen-
timent index and ESI used in the models with quarterly and monthly data, respectively. 

Both the ESI and the Romanian Inflation-Report Sentiment Index act as “early-warning” 
systems, signaling changes in economic trends before they appear in official data. However, 
they differ significantly in their construction.

The Romanian Inflation-Report Sentiment Index is created using machine-learning-based 
sentiment analysis on the unstructured text of the National Bank’s quarterly inflation reports. Its 
goal is to measure the tone of central bank communications, mainly reflecting expert opinions 
about future inflation. Since similar narrative reports are not available from other CEE central 
banks, we use the ESI as our second measure.

The  ESI, compiled by the  European Commission’s Directorate-General for Economic 
and Financial Affairs (DG ECFIN), is a composite index based on structured monthly surveys 
of firms (in industry, services, retail, construction) and households. It reflects broader business 
and consumer expectations about the current and future economic situation—and is designed 
to track overall economic confidence rather than just inflation. The ESI is constructed in two 
main steps. First, for each survey component, country-level balances of positive versus negative 
responses are aggregated using moving-average country weights based on sectoral value-added 
shares. Second, these country-aggregated component series are combined using fixed survey 
weights to produce the overall ESI.
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In summary, the Romanian index assesses expert sentiment in central-bank statements, 
while the ESI gauges perceived sentiment among a broad range of economic participants. To-
gether, they provide complementary early signals of inflationary pressures and overall econom-
ic confidence.

The Appendix (tables A1-A4) presents descriptive statistics for the main variables and 
shows that only the unemployment variable follows a normal distribution.

The  analysis starts with the  econometric approach based on ARDL models with three 
specifications:

1 1 1 1 1HICP HICPt t t tsiα β γ ε−= + × + × + ,	 (1)

2 2 1 2 1 2HICP HICPt t t t tsi uα β γ δ ε−= + × + × + × + ,	 (2)

3 3 1 2 3HICP HICPt t t tuα β δ ε−= + × + × + ,	 (3)

where:
HICP  is the quarterly harmonised index of consumer prices.
si  is the sentiment index.
u  is the unemployment rate.
α1, α2, α3, β1, β2, β3, γ1, γ2, δ1, δ2 are the parameters of the model.
ε1t,  ε2t, ε3t  are the errors.
t  is the time index.

ARDL models were chosen for this research because they can reduce endogeneity caused 
by the connection between inflation and unemployment. Similar models are built for all CEE 
countries using monthly ESI, HICP, and unemployment rates provided by Eurostat.

We explored multiple settings, including univariate and multivariate series, adding extra 
predictors: the sentiment index and unemployment rate. Specifically, we investigate the follow-
ing configurations:

•	 Univariate Series: we used only past values of HICP to forecast future values.
•	 Multivariate Series setting I: we combined past values of HICP and the unemployment 

rate.
•	 Multivariate Series setting II: we combined past values of HICP and the sentiment index / 

ESI.
•	 Multivariate Series setting III: we combined past values of HICP, the sentiment index / 

ESI, and the unemployment rate.

The ML models are run on Python, while the ARDL models in EViews. To implement our ML 
models for time series forecasting, we proceeded as follows:
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•	 pre-processed the  data, structuring it  into suitable input-output pairs for supervised 
learning.

•	 split the data sets into training and testing subsets. 
•	 defined the RF, SVR, and LSTM model architecture.
•	 trained the model using historical data, performing a grid search for the best hyperparam-

eter values.
•	 used the  trained model to provide forecasts on unseen future data points and assessed 

the prediction accuracy.

We first prepared our datasets for use with ML methods. Preparing time series data for ML 
involves specific steps to ensure the data is properly structured for modeling. One essential step 
is creating lag features, which are basically previous time steps of the target variable or related 
variables used as inputs for the model. Lag features help incorporate the temporal relationships 
inherent in time series data by including past values to predict future ones. 

In the pre-processing step, we created a dataset suitable for a supervised learning method, 
consisting of pairs in the form (X, Y) where X is the input vector and Y is the output value. 
In this context, X is a vector made up of several past values, and Y is the next value in the time 
series that we aim to predict.

In the univariate setting, if we denote by X = (X0, X1, X2, ..., XT), our time series, the train-
ing and test sets are structured as follows:

( ) ( )1 2 1 1 , , , ,t nlags t nlags t t tX X X X X− − − − − +… 	 (4)

( ) ( )2 3 1 2 , , ... ,  , t nlags t nlags t t tX X X X X− − − − + + 	 (5)

( ) ( )3 4 1 2 3 , , ... ,  , t nlags t nlags t t tX X X X X− − − − + + + 	 (6)

where nlags is the number of  lags (past values) used to build sequences of data points 
to predict the value at t+1. In our experiments, we used a lag of 6-time steps based on an auto-
correlation analysis. 

Scaling features are another crucial preprocessing step for many ML methods because 
it ensures all characteristics contribute equally to the model’s learning process. Without scaling, 
features with larger numerical ranges tend to dominate the learning algorithm, causing biased 
results and subpar model performance. This step is especially important for algorithms based 
on distance metrics. For SVR, we applied Min-Max scaling, bringing all values into the [0,1] 
range. As a result, we achieved faster convergence during training, improved the model’s sta-
bility and performance, and made sure each feature was properly weighted in the prediction 
process (Ahsan et al., 2021; Han et al., 2014).
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Figure 1. Monthly HICP for CEE countries (2015 = 100). The train-test split.

Source: Eurostat database
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Figure 1. Monthly HICP for CEE countries (2015 = 100). The train-test split. 
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Regarding the split of the quarterly data sets for Romania (training and testing subsets), 
we kept the last 4 values from the time series as a test set and used the other 62 values as a train-
ing set. For the monthly data for CEE countries, we kept the last 3 values (2025M1, 2025M2, 
2025M3) as a test set and used the rest (2006M1-2024M12) as a training data set. The monthly 
HICP for all CEE countries is shown in Figure 1, while the ESI and unemployment rate are 
shown in the Appendix, Figures A1 and A2.

For the concrete implementation of the ML methods, we used the scikit-learn (Pedregosa 
et al., 2011), Keras (Chollet, 2015), and TensorFlow (Abadi et al., 2016) libraries. For RF and 
SVR, we relied on scikit-learn, while for LSTM, we used Keras and TensorFlow. Scikit-learn 
provides extensive customization options for RF and SVR models through various hyperpa-
rameters. For RF, users can adjust the number of trees, maximum depth, and criteria for split-
ting nodes, among other settings. Similarly, for SVR, users can select different kernels (linear, 
polynomial, RBF), set the regularization parameter (C), and define the epsilon-insensitive tube 
width. This flexibility allows fine-tuning of models to optimize performance for specific tasks.

Using LSTM networks with Keras, a user-friendly neural network API, and TensorFlow, 
a robust open-source ML framework, provides numerous benefits such as ease of use, flexibil-
ity, and scalability. Keras offers a high-level interface for constructing neural network archi-
tectures, enabling users to develop and train complex models with minimal code. Meanwhile, 
TensorFlow supplies efficient computation and optimization tools, making it ideal for training 
large-scale deep learning models. 

While RF and SVR models do not need a specific architecture, LSTM, on the other hand, 
requires careful design. We built an LSTM network with two stacked LSTM layers and a final 
Dense layer to generate forecasts. Recurrent dropout was used in both LSTM layers, along with 
L2 regularization on the Dense layer to prevent overfitting. The network was optimized with 
Adam.

Hyperparameter tuning is essential for optimizing machine learning models used in eco-
nomic time series prediction. These methods, ranging from traditional statistical techniques 
to advanced deep learning architectures, rely heavily on hyperparameters to achieve optimal 
performance. Selecting the right hyperparameters greatly impacts the model’s accuracy, robust-
ness, and ability to capture complex patterns unique to economic data. Proper hyperparameter 
choice influences the model’s capacity to learn from data, generalize to new cases, and avoid 
overfitting. However, manually tuning hyperparameters can be time-consuming and biased, 
making automated methods necessary. Among these, grid search with cross-validation is a pop-
ular and effective approach. Grid search tests a set of predefined hyperparameter combinations 
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to find the best configuration to maximize performance. Cross-validation is a dependable vali-
dation method that splits data into multiple parts, allowing thorough evaluation of the model’s 
performance across different data splits. Combining grid search with cross-validation helps 
practitioners find optimal hyperparameters, evaluate the model’s ability to generalize, and re-
duce overfitting risks. 

Research in economic forecasting has shown that grid search with cross-validation ef-
fectively improves the accuracy and consistency of predictive models. For example, studies 
by Hyndman and Athanasopoulos (2018) highlight how hyperparameter tuning through grid 
search with cross-validation enhances the forecasting ability of traditional time series methods 
like ARIMA and exponential smoothing. Additionally, in recent years, machine learning tech-
niques such as ensemble methods, SVMs, and deep learning models like RNNs and LSTMs 
have become more popular in economic time series forecasting. Grid search with cross-val-
idation has been key in fine-tuning hyperparameters of machine learning models to achieve 
better predictive accuracy and stability, as demonstrated in a study on stock price prediction 
(Hoque and Aljamaan, 2021). Similarly, in computer vision, this approach has helped fine-tune 
hyperparameters for convolutional neural networks, resulting in higher accuracy and robustness 
in image recognition (Szegedy et al., 2016). These results highlight the important role of hy-
perparameter tuning techniques in reaching top-tier performance across various applications.

Therefore, hyperparameter tuning - by exploring the hyperparameter space and thorough-
ly assessing model performance - is a vital step in optimizing ML models. As the field of eco-
nomic forecasting advances, the significance of effective hyperparameter tuning techniques like 
grid search with cross-validation cannot be overstated. 

Our approach uses a grid search to find the best parameters for RF, SVR, and LSTM. 
We apply 3-fold cross-validation to ensure reliable performance evaluation. Because of the se-
quential nature of the data, we use the TimeSeriesSplit class from the scikit-learn library, which 
preserves the order of data points during cross-validation. This method divides the data into 
training and testing sets so that each training set precedes its corresponding test set, mimicking 
a real-world forecasting situation.

For the RF, we searched for the best values for the following parameters:

•	 n_estimators - specifies the number of trees in the forest;
•	 max_depth - sets the maximum depth of each tree in the forest;
•	 min_samples_split - defines the minimum number of samples required to split an internal 

node;
•	 max_features - specifies the number of features to consider when looking for the best split 

(as fraction of the total number of features.
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For SVR, we used the following parameters to find the best model:

•	 C – this parameter determines the strength of regularization, also called the regularization 
parameter;

•	 gamma - specifies the kernel coefficient for 'rbf', and 'poly’;
•	 coef0 - is the independent term in the kernel function. It is only significant in 'poly' and 

'sigmoid' kernels;
•	 Epsilon - defines the epsilon-tube where errors are not penalized. It controls the margin's 

width in the ε-insensitive loss function;
•	 kernel - specifies the type of kernel to use in the algorithm (we used 'poly', and 'rbf' in our 

experiments);
•	 degree - the degree of the polynomial kernel function ('poly').

For LSTM, we considered the following hyperparameters for tuning.
•	 recurrent dropout (layer1, layer2) - specifies the dropout rate for recurrent connections 

in the LSTM units during training, helping to prevent overfitting;
•	 dropout (layer 1, layer2) - specifies the dropout rate for the forward connections. Used 

to prevent overfitting;
•	 number of neurons - the number of LSTM units or neurons in the hidden layers;
•	 batch size - the  number of  samples processed before updating the  model's parameters 

during training;
•	 L2 for the kernel_regularizer - allows us to apply L2 regularization to the weights of the fi-

nal Dense layer. L2 regularization penalizes large weights by adding a term to the loss 
function that is proportional to the square of the weights, helping to prevent overfitting.

The values used for these parameters are presented in Table 1. 

After selecting the best parameters, we trained the model and assessed its performance 
on both the training and testing datasets. During the training of  the LSTM models, we used 
the Mean Squared Error (MSE) as  the  loss function, while also monitoring the Mean Abso-
lute Percentage Error (MAPE) and Mean Absolute Error (MAE). MSE calculates the average 
squared difference between forecasted and actual values, reflecting the model’s variance (James 
et al., 2013). MAPE, on the other hand, measures the average percentage difference between 
predicted and actual values, making it useful for understanding errors in relation to the true val-
ue (Hyndman and Koehler, 2006). In regression tasks, MSE, MAPE, and MAE serve to evalu-
ate different aspects of model performance. Although MSE penalizes larger errors more heavily 
because of  squaring, MAPE expresses errors as  a  percentage of  the  actual values, offering 
insight into the relative size of errors. MAPE is especially useful in forecasting and business 
settings where understanding the magnitude of error matters (Hyndman and Koehler, 2006). 
MSE, MAPE, and MAE are calculated as follows:
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Table 1. The values for parameters in SVR, RF and LSTM networks

Grid parameters

SVR RF LSTM

Parameter Value Parameter Value Parameter Value

C 1, 2, 3, 4, 5, 6, 7, 8, 9 n_estimators 50, 75, 100, 150, 
200

Recurrent 
dropout layer 1 0.0, 0.1, 0.2

Gamma 0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8, 0.9 max_depth None, 5, 10, 20, 

30, 40, 50
Recurrent 
dropout layer 2 0.0, 0.1, 0.2

Coef0 0, 0.01, 0.5, 0.1, 1.0, 
2.0, 2.5 min_samples_split 2, 5, 10, 12 ,15, 

20 Dropout layer1 0.0, 0.1, 0.2

epsilon 0.01, 0.05, 0.1, 0.2, 
0.3 max_features 0.1, 0.3, 0.5, 0.7, 

0.9 Dropout layer2 0.0, 0.1, 0.2

kernel rbf, poly L2 regularization 0.0, 0.0001, 
0.001, 0.003

degree 1, 2, 3, 4, 5 Number of units 128, 256, 512

Batch size 1, 8, 16

Source: own construction
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where:
n – the number of data points;
yi – actual observed value for a certain ith data point;
yi – predicted value for a particular ith data point.

All preprocessing and model selection are performed within the training data only to avoid 
look-ahead bias. Standardization/scaling parameters are fit on each training window and then 
applied to the corresponding validation/test data; no information from the validation/test sets 
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enters the  fit. Hyperparameters are chosen by time-series cross-validation with expanding 
windows (scikit-learn TimeSeriesSplit), preserving temporal order. For neural networks, ear-
ly stopping monitors the within-fold validation loss only. After selection, each model is refit 
on the entire training window and evaluated once on the held-out test observations.

Finally, using the trained model, we predicted the next three HICP values and calculated 
the performance metrics.

4.  Results

4.1 Results based on simulations

To assess whether our models outperform a naïve forecast, we conducted two simulation stud-
ies.

First, we conducted a basic simulation study by generating two series with 100 observa-
tions each, which were used to fit ARDL and ML models (RF, SVR, and LSTM) and to make 
forecasts. 

We considered two data-generating processes (DGPs):

1 10.3t t tx x e−= × +
	 (10)

20.2t t ty x e= × + 	 (11)

where e1t , e2 t are Gaussian white noise (random numbers).

We generated two data series, each with 100 values, and split them into training and test-
ing sets—using the first 80 for training and the remaining for testing. Using these datasets, we 
fitted four models: ARDL, SVR, RF, and LSTM, based on the feature vector provided by:

{ }1 2 3 1, , , ,t t t t t tX y y y x x− − − −= 	   (12)

After fitting the models, we performed one-step-ahead predictions on the test set and com-
pared the performance metrics of the four prediction models mentioned above with the naïve 
forecast provided by: 

 16 
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the entire training window and evaluated once on the held-out test observations. 
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studies. 

First, we conducted a basic simulation study by generating two series with 100 
observations each, which were used to fit ARDL and ML models (RF, SVR, and LSTM) and 
to make forecasts.  

We considered two data-generating processes (DGPs): 
 

𝑥𝑥𝑡𝑡 = 0.3 ∙ 𝑥𝑥𝑡𝑡−1 + 𝑒𝑒1𝑡𝑡 (10) 
𝑦𝑦𝑡𝑡 = 0.2 ∙ |𝑥𝑥𝑡𝑡| + 𝑒𝑒2𝑡𝑡 (11) 

 
 
𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒1𝑡𝑡, 𝑒𝑒2𝑡𝑡 are Gaussian white noise (random numbers). 

We generated two data series, each with 100 values, and split them into training and 
testing sets—using the first 80 for training and the remaining for testing. Using these datasets, 
we fitted four models: ARDL, SVR, RF, and LSTM, based on the feature vector provided by: 
 

𝑋𝑋𝑡𝑡 = {𝑦𝑦𝑡𝑡−1, 𝑦𝑦𝑡𝑡−2, 𝑦𝑦𝑡𝑡−3,  𝑥𝑥𝑡𝑡,  𝑥𝑥𝑡𝑡−1}   (12) 
 

After fitting the models, we performed one-step-ahead predictions on the test set and 
compared the performance metrics of the four prediction models mentioned above with the 
naïve forecast provided by:  

 
𝑦𝑦𝑡𝑡

naivê = 𝑦𝑦𝑡𝑡−1 (13) 
 

The ARDL model was estimated using OLS with an intercept and the previously 
mentioned regressor. The RF was built with 200 trees and the following parameters:  
 

min_samples_split = 10 
min_samples_leaf = 1 
max_features = 0.2 
max_depth = 10 

 
The SVR model used a one-degree polynomial kernel with C = 1 and 𝜀𝜀 = 0.01 and the 

LSTM network had a single layer with 16 units, trained for 50 epochs with a batch size of 8. 
The loss per test point was the squared error, needed for Diebold-Mariano tests: l𝑡𝑡 =

(𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡̂𝑡)2. We reported the aggregated metrics on the test set: RMSE, MSE, MAE, and their 
standard deviations in Table 2 for 200 replications of the experiment.  
 

Table 2. Performance metrics for the test sample (one-step forecasts) 
Method RMSE sd(RMSE) MSE sd(MSE) MAE sd(MAE) 

  yt–1	 (13)

The ARDL model was estimated using OLS with an intercept and the previously men-
tioned regressor. The RF was built with 200 trees and the following parameters: 
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min_samples_split = 10

min_samples_leaf = 1

max_features = 0.2

max_depth = 10

The  SVR model used a  one-degree polynomial kernel with C = 1 and ε = 0.01 and 
the LSTM network had a single layer with 16 units, trained for 50 epochs with a batch size of 8.

The  loss per test point was the  squared error, needed for Diebold-Mariano tests:  
lt = (yt – yt)2 . We reported the aggregated metrics on the test set: RMSE, MSE, MAE, and their 
standard deviations in Table 2 for 200 replications of the experiment. 

Table 2. Performance metrics for the test sample (one-step forecasts)

Method RMSE sd(RMSE) MSE sd(MSE) MAE sd(MAE)

ARDL 0.8059 0.1701 0.6495 0.3342 0.6943 0.1491

RF 0.8069 0.1631 0.6510 0.3061 0.6725 0.1409

SVR 0.7931 0.1804 0.6291 0.3396 0.6775 0.1570

LSTM 0.7316 0.2043 0.5353 0.4070 0.5969 0.1720

Naïve 1.0671 0.2363 1.1388 0.6600 0.8761 0.2063

Source: own computations

We performed paired comparisons (each method versus Naïve) and computed Diebold–
Mariano (DM) test on d  squared-error loss, which 1are shown in Table 3. For h = 1, DM reduc-
es to a t-type statistic on  where dt = lM,t – lnaive,t We also computed the Wilcoxon signed-rank test 
on paired lM,t versus lnaive,t . The 1-sided p-values are converted when the observed statistic has 
the direction consistent with the alternative E[d] < 0 (all four methods produced negative d. For 
h-step-ahead forecasts the error sequence is overlapping, so we estimate Var(dt) with a Newey–
West HAC estimator using a Bartlett kernel and truncation lag q = h – 1. 
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Table 3. Paired tests, DM, and Wilcoxon p-values

Comparison Mean(d) DM stat
DM 

p-value 
(2-sided)

DM 
p-value 

(1-sided)

Wilcoxon 
p-value 

(2-sided)

Wilcoxon 
p-value 

(1-sided)

ARDL vs Naïve −0.4892 −2.3148 0.0320 0.0160 0.0266 0.0133

RF vs Naïve −0.4877 −2.0313 0.0564 0.0282 0.0296 0.0148

SVR vs Naïve −0.5097 −2.4419 0.0246 0.0123 0.0266 0.0133

LSTM vs Naïve −0.6035 −2.1993 0.0404 0.0202 0.0362 0.0181

Source: own computations

Table 3 shows paired comparisons of replication losses for all four methods versus the 
naïve forecast. All four fitted methods produce significantly lower one-step-ahead MSE than 
the naïve hold-last benchmark in this experiment. In the test sample, the naïve MSE was 1.1388; 
LSTM achieves the greatest reduction (MSE = 0.5353, about 53% lower), while ARDL and 
SVR decrease MSE by approximately 43% (MSE around 0.6495 and 0.6291, respectively), and 
RF by about 45% (MSE = 0.6510). These effect sizes are practically large and consistent across 
replications (see mean ± SD tables). We assessed significance with paired one-sided Diebold–
Mariano tests (H₁: method loss < naïve loss) and one-sided Wilcoxon signed-rank tests as a ro-
bust check. Converting the reported two-sided DM p-values to one-sided p-values (and using 
Wilcoxon one-sided directly) yields DM one-sided p ≈ 0.0160 (ARDL), 0.0282 (RF), 0.0123 
(SVR), and 0.0202 (LSTM), and Wilcoxon one-sided p ≈ 0.0133, 0.0148, 0.0133, 0.0181, re-
spectively. After Benjamini-Hochberg FDR correction across the four comparisons, all adjusted 
p-values remain below 0.05, confirming that each method outperforms the naïve benchmark 
even after controlling for multiple testing. We observed that RF is marginal on the parametric 
DM test but significant with the Wilcoxon test, indicating minor departures from DM’s normal-
ity assumptions (such as skewness or outliers) in RF’s paired differences. Reporting both tests 
and the effect sizes above provides the clearest and most transparent account.

The  second simulation study examined more complex DGPs that better resemble real 
processes. 

Specifically, we generated a monthly series of log CPI and two exogenous covariates (un-
employment ut and sentiment index st) under a small set of controlled scenarios. Each Monte 
Carlo replication produces a panel:
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with a monthly index t. The core DGP for log-CPI is a persistent autoregressive process 
with exogenous effects, optional MA(1) shocks, an  optional regime nonlinearity on st, and 
an optional structural break. Specifically, we simulate:
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The second simulation study examined more complex DGPs that better resemble real 
processes.  

Specifically, we generated a monthly series of log CPI and two exogenous covariates 
(unemployment 𝑢𝑢𝑡𝑡 and sentiment index 𝑠𝑠𝑡𝑡) under a small set of controlled scenarios. Each 
Monte Carlo replication produces a panel: 
 

(datet,   ln 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 ,  𝑢𝑢𝑡𝑡,  𝑠𝑠𝑡𝑡)𝑡𝑡=1
𝑇𝑇  (14) 

 
with a monthly index 𝑡𝑡. The core DGP for log-CPI is a persistent autoregressive process with 
exogenous effects, optional MA(1) shocks, an optional regime nonlinearity on 𝑠𝑠𝑡𝑡, and an 
optional structural break. Specifically, we simulate: 
 

𝑢𝑢𝑡𝑡 = μ𝑢𝑢 + ϕ𝑢𝑢(𝑢𝑢𝑡𝑡−1 − μ𝑢𝑢) + ε𝑡𝑡
(𝑢𝑢) ,      ε𝑡𝑡

(𝑢𝑢) ∼ 𝒩𝒩(0, σ𝑢𝑢
2 ) (15) 

𝑠𝑠𝑡𝑡 = μ𝑠𝑠 + ϕ𝑠𝑠(𝑠𝑠𝑡𝑡−1 − μ𝑠𝑠) + ε𝑡𝑡
(𝑠𝑠), 𝜀𝜀𝑡𝑡

(𝑠𝑠) ∼ 𝒩𝒩(0, 𝜎𝜎𝑠𝑠
2) (16) 

𝑤𝑤𝑡𝑡 ∼ 𝒩𝒩(0, σ𝑤𝑤
2 ) (17) 

η𝑡𝑡 = 𝑤𝑤𝑡𝑡 + θ 𝑤𝑤𝑡𝑡−1, MA(1) innovation; if θ = 0, reduces to 𝑤𝑤_𝑡𝑡 (18) 
ln 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = μ + ϕ  ln 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡−1 + β𝑢𝑢 𝑢𝑢𝑡𝑡−1 + β𝑠𝑠 𝑠𝑠𝑡𝑡−1 + γ 𝑢𝑢𝑡𝑡−1𝑠𝑠𝑡𝑡−1 + 𝑓𝑓NL(𝑠𝑠𝑡𝑡−1) + η𝑡𝑡

+ Δ𝑡𝑡
(break) 

(19) 

 
where: 

• 𝑓𝑓NL(𝑠𝑠𝑡𝑡−1) is an optional nonlinear/regime term activated when sentiment crosses a 
threshold 𝑠𝑠𝑡𝑡−1 > 𝑠𝑠∗. In the default scenarios, we set 

𝑓𝑓NL(𝑠𝑠𝑡𝑡−1) = {κ (𝑠𝑠𝑡𝑡−1 − 𝑠𝑠∗) 𝑠𝑠𝑡𝑡−1 > 𝑠𝑠∗

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
So, sentiment can increase persistence or level, conditional on a high-sentiment regime. 
 

• Δ𝑡𝑡
(break) is an additive structural break applied from a break time 𝑡𝑡 ≥ 𝑡𝑡break 

Δ𝑡𝑡
(break) = {𝛿𝛿 𝑡𝑡 ≥ 𝑡𝑡break

0 𝑡𝑡 < 𝑡𝑡break
 

 
The simulator enforces that tbreak is placed only when there is sufficient pre- and post-

break data. 
We generated 5 datasets, each representing a different scenario: 

• 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙: 𝜙𝜙 = 0.95,  𝛽𝛽𝑢𝑢 = −0.05,  𝛽𝛽𝑠𝑠 = 0.10,  𝜃𝜃 = 0 
• ℎ𝑖𝑖𝑖𝑖ℎ_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝: ϕ = 0.99 
• 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: ϕ = 0.90,  𝑠𝑠∗ = 0.5,  κ = 0.4,  γ = 0.0 
• 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏: additive Δ = 0.08 in 𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 at safe breaks  
• 𝑚𝑚𝑚𝑚_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛:  θ = −1.2 to probe non-invertible shocks 

 
Our MA non-invertible scenario and regime/break experiments are included to address 

concerns that annual-rate constructions can induce non-invertibility and complicate inference; 
by working in the CPIt domain and testing different DGP regimes, we ensure models are 
evaluated under the pathologies that can appear in real conditions. 

We used R =200 replications with T = 240 months. The simulation script enforces 𝑇𝑇 ≥
𝑁𝑁lags + 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐵𝐵, where 𝑁𝑁lags = 6, is the lag window used by all models, 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 = 6 is the 
maximal forecast horizon evaluated, and 𝐵𝐵 is a buffer for stable training (currently we set 𝐵𝐵 =
12) which prevents invalid lag construction. The break position 𝑡𝑡break is chosen so that 𝑡𝑡break ≥

(0, σu
2)	 (15)

st = μs +  ϕs(st–1 – μs) + εt
(s),     εt

(s)
 ~ 

 18 

The second simulation study examined more complex DGPs that better resemble real 
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𝑢𝑢𝑡𝑡 = μ𝑢𝑢 + ϕ𝑢𝑢(𝑢𝑢𝑡𝑡−1 − μ𝑢𝑢) + ε𝑡𝑡
(𝑢𝑢) ,      ε𝑡𝑡

(𝑢𝑢) ∼ 𝒩𝒩(0, σ𝑢𝑢
2 ) (15) 

𝑠𝑠𝑡𝑡 = μ𝑠𝑠 + ϕ𝑠𝑠(𝑠𝑠𝑡𝑡−1 − μ𝑠𝑠) + ε𝑡𝑡
(𝑠𝑠), 𝜀𝜀𝑡𝑡

(𝑠𝑠) ∼ 𝒩𝒩(0, 𝜎𝜎𝑠𝑠
2) (16) 

𝑤𝑤𝑡𝑡 ∼ 𝒩𝒩(0, σ𝑤𝑤
2 ) (17) 

η𝑡𝑡 = 𝑤𝑤𝑡𝑡 + θ 𝑤𝑤𝑡𝑡−1, MA(1) innovation; if θ = 0, reduces to 𝑤𝑤_𝑡𝑡 (18) 
ln 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = μ + ϕ  ln 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡−1 + β𝑢𝑢 𝑢𝑢𝑡𝑡−1 + β𝑠𝑠 𝑠𝑠𝑡𝑡−1 + γ 𝑢𝑢𝑡𝑡−1𝑠𝑠𝑡𝑡−1 + 𝑓𝑓NL(𝑠𝑠𝑡𝑡−1) + η𝑡𝑡

+ Δ𝑡𝑡
(break) 

(19) 

 
where: 

• 𝑓𝑓NL(𝑠𝑠𝑡𝑡−1) is an optional nonlinear/regime term activated when sentiment crosses a 
threshold 𝑠𝑠𝑡𝑡−1 > 𝑠𝑠∗. In the default scenarios, we set 

𝑓𝑓NL(𝑠𝑠𝑡𝑡−1) = {κ (𝑠𝑠𝑡𝑡−1 − 𝑠𝑠∗) 𝑠𝑠𝑡𝑡−1 > 𝑠𝑠∗

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
So, sentiment can increase persistence or level, conditional on a high-sentiment regime. 
 

• Δ𝑡𝑡
(break) is an additive structural break applied from a break time 𝑡𝑡 ≥ 𝑡𝑡break 

Δ𝑡𝑡
(break) = {𝛿𝛿 𝑡𝑡 ≥ 𝑡𝑡break

0 𝑡𝑡 < 𝑡𝑡break
 

 
The simulator enforces that tbreak is placed only when there is sufficient pre- and post-

break data. 
We generated 5 datasets, each representing a different scenario: 

• 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙: 𝜙𝜙 = 0.95,  𝛽𝛽𝑢𝑢 = −0.05,  𝛽𝛽𝑠𝑠 = 0.10,  𝜃𝜃 = 0 
• ℎ𝑖𝑖𝑖𝑖ℎ_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝: ϕ = 0.99 
• 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: ϕ = 0.90,  𝑠𝑠∗ = 0.5,  κ = 0.4,  γ = 0.0 
• 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏: additive Δ = 0.08 in 𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 at safe breaks  
• 𝑚𝑚𝑚𝑚_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛:  θ = −1.2 to probe non-invertible shocks 

 
Our MA non-invertible scenario and regime/break experiments are included to address 

concerns that annual-rate constructions can induce non-invertibility and complicate inference; 
by working in the CPIt domain and testing different DGP regimes, we ensure models are 
evaluated under the pathologies that can appear in real conditions. 

We used R =200 replications with T = 240 months. The simulation script enforces 𝑇𝑇 ≥
𝑁𝑁lags + 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐵𝐵, where 𝑁𝑁lags = 6, is the lag window used by all models, 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 = 6 is the 
maximal forecast horizon evaluated, and 𝐵𝐵 is a buffer for stable training (currently we set 𝐵𝐵 =
12) which prevents invalid lag construction. The break position 𝑡𝑡break is chosen so that 𝑡𝑡break ≥

(0, σw
2  )	 (17)

ηt = wt + θwt–1, MA(1) innovation; if θ = 0, reduces to w_t	 (18)

lnCPIt = μ + ϕ lnCPIt–1+ ( ) ( )break
1 1 1 1 1 1lnì lnt t u t s t t t NL t t tCPI CPI u s u s f sφ β β γ η− − − − − −= + + + + + + + ∆  	 (19)

where:

•	 fNL (st–1) is an optional nonlinear/regime term activated when sentiment crosses a threshold 
st–1  >  s* In the default scenarios, we set 

( ) ( )* *
1 1

NL 1

ê

0
t t

t

s s s s
f s

otherwise
− −

−

 − >= 


So, sentiment can increase persistence or level, conditional on a high-sentiment regime.

•	 Δt
(break) is an additive structural break applied from a break time t ≥ t 

break  

Δt
(break) = ( )break break

break

Ä
0t

t t
t t

δ ≥
=  <

The simulator enforces that tbreak is placed only when there is sufficient pre- and post-break data.

We generated 5 datasets, each representing a different scenario:

•	 baseline_linear: ϕ = 0.95, βu = –0.05, βs = 0.10, θ = 0

•	 high_persistence: ϕ = 0.99 

•	 nonlinear_regime:  ϕ = 0.90,  s* = 0.5, κ = 0.4, γ = 0.0 

•	 structural_break:  additive Δ = 0.08 in lnCPIt  at safe breaks 

•	 ma_noninvertible: θ = –1.2  to probe non-invertible shocks
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Our MA non-invertible scenario and regime/break experiments are included to address 
concerns that annual-rate constructions can induce non-invertibility and complicate inference; 
by working in the CPIt domain and testing different DGP regimes, we ensure models are eval-
uated under the pathologies that can appear in real conditions.

We used R = 200 replications with T = 240 months. The  simulation script enforces  
T ≥ Nlags + Hmax + B, where Nlags = 6, is the  lag window used by all models, Hmax = 6 is 
the maximal forecast horizon evaluated, and B is a buffer for stable training (currently we set 
B = 12) which prevents invalid lag construction. The break position t 

break is chosen so that   
t 

break  ≥  Nlags+ 12,  t 
break ≤ T – Hmax – 6  to ensure sufficient pre/post samples for estimation and 

evaluation; if no valid break is possible, no break is applied.

We fitted the same four models on each replication: (1) an ARDL-style linear model es-
timated by OLS; (2) an RF regressor; (3) an SVR model with a polynomial kernel; and (4) 
a small LSTM network. All methods use the same input data: the last Nlags = 6 lags of lnCPI  

and the same lagging convention for covariates (unemployment and sentiment).

For the ARDL OLS we built regressors:

{ }1 6 1 6 1 6ln , , ln , , , , , ,t t t t t t tX CPI CPI u u s s− − − − − −= … … … 	 (20)

and estimated

lnCPIt  = α + Xt β + εt 	 (21)

For RF, SVR, and LSTM we constructed a vector following the same lag-window con-
vention. Before SVR and LSTM, we standardized features (zero mean, unit variance). For each 
replication, the  last Hmax = 6 months are reserved for evaluation. Let T be the series length; 
the training sample ends at index t 

train = T – Hmax – 1. Forecasts are generated recursively for 
horizons h ∊ {1, 3, 6}.

Besides the performance metrics used in the first simulation study, for each scenario and 
forecast horizon, we computed the win_rate of a forecasting method as the fraction of Mon-
te-Carlo replications in which that method attains the smallest RMSE. Denote by Lr,m the loss 
(RMSE) in replication r for method m and let M be the set of methods. For replication r we de-

fined ,
,

1 arg min
:

0

r jj M
rr m

ifm L
kw

otherwise

∈

 ∈= 


where kr is the number of methods tied for the minimum 

loss in replication r (so ties are split equally). The reported win-rate is:
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m ,
1

1win_rate
R

r m
r

w
R =

= ∑

with R the number of replications. We reported bootstrap 95% confidence intervals for win-
rates (nonparametric resampling of replications) and complemented win-rates with mean ± sd 
 of RMSE and paired statistical tests (paired t-test and Wilcoxon signed-rank) on replication 
RMSE differences to assess whether observed ranking differences are statistically significant.

Table 4 outlines the parameters used in the simulations.

Table 4. Default parameters used in the simulation

Parameters Values

Replications R 200

Series length T 240 months

Lags 6

Forecast horizons {1, 3, 6} months

RF: n_estimators 200

SVR polynomial kernel (degree 1), C = 1.0, ε = 0.01

LSTM 16 units, 50 epochs, batch size 8

Source: own construction

The performance metrics for each scenario, forecasting horizon, and method are present-
ed in Tables 5, 6, 7, 8, and 9, while the paired comparisons (each method versus Naïve) and 
the DM and Wilcoxon one-sided tests are presented in Tables A6-A7. 
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Table 5. Performance metrics for the baseline scenario

Method Mean(RMSE) sd(RMSE) Mean(MAPE) sd(MAPE)

H = 1

ARDL 0.3959 0.3289 3.4890 2.9674

LSTM 0.4724 0.3636 4.2088 3.4600

Naive 0.3972 0.3228 3.4811 2.9046

RF 0.4445 0.3446 3.8817 3.0782

SVR 0.4117 0.3297 3.5934 2.9375

H = 3

ARDL 0.4257 0.3037 3.6753 2.6657

LSTM 0.4636 0.3504 4.0336 3.1793

Naive 0.6877 0.5119 5.8805 4.2978

RF 0.4560 0.3441 3.9508 2.9681

SVR 0.4245 0.2968 3.6648 2.6094

H = 6

ARDL 0.4350 0.3308 3.8381 3.0583

LSTM 0.5184 0.3755 4.6114 3.5766

Naive 1.0008 0.7415 8.8593 6.8600

RF 0.5016 0.3913 4.4790 3.7828

SVR 0.4470 0.3302 3.9573 3.0982

Source: own computations
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Table 6. Performance metrics for the MA noninvertible scenario

Method Mean(RMSE) sd(RMSE) Mean(MAPE) sd(MAPE)

H = 1

ARDL 0.4831 0.3725 4.0363 3.0791

LSTM 0.6640 0.5451 5.5748 4.6241

Naive 0.6026 0.4373 5.0275 3.6783

RF 0.4755 0.3974 4.0028 3.4231

SVR 0.4739 0.3773 3.9748 3.1883

H = 3

ARDL 0.5106 0.3800 4.2899 3.2413

LSTM 0.6813 0.5163 5.7253 4.4557

Naive 0.6967 0.5199 5.8242 4.3998

RF 0.5528 0.4252 4.6538 3.7072

SVR 0.4913 0.3845 4.1407 3.3147

H = 6

ARDL 0.5760 0.4276 4.8668 3.6972

LSTM 0.7484 0.5446 6.3034 4.7679

Naive 0.7676 0.6375 6.5006 5.5594

RF 0.5349 0.4476 4.5549 3.9959

SVR 0.5310 0.4182 4.4912 3.6875

Source: own computations
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Table 7.  Performance metrics for the high persistence scenario

Method Mean(RMSE) sd(RMSE) Mean(MAPE) sd(MAPE)

H = 1

ARDL 0.3953 0.3289 0.7412 0.6234

LSTM 0.7007 0.5272 1.3038 0.9786

Naive 0.3953 0.3266 0.7413 0.6204

RF 0.5371 0.4174 0.9992 0.7765

SVR 0.5611 0.4248 1.0460 0.7947

H = 3

ARDL 0.4204 0.3045 0.7803 0.5618

LSTM 0.7013 0.5418 1.2943 0.9876

Naive 0.7148 0.5520 1.3283 1.0178

RF 0.6682 0.6217 1.2334 1.1352

SVR 0.5458 0.4414 1.0106 0.8100

H = 6

ARDL 0.4382 0.3345 0.8144 0.6262

LSTM 0.4344 0.4574 1.3516 1.0029

Naive 1.0754 0.8007 2.0079 1.4916

RF 0.8543 0.7403 1.5807 1.3437

SVR 0.6595 0.4566 1.2316 0.8649

Source: own computations
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Table 8. Performance metrics for the non linear regime scenario

Method Mean(RMSE) sd(RMSE) Mean(MAPE) sd(MAPE)

H = 1

ARDL 0.4133 0.3380 43.5098 119.5565

LSTM 0.3787 0.4556 31.2507 77.2534

Naive 0.5028 0.3712 53.7913 144.6628

RF 0.4995 0.3941 45.0396 112.6434

SVR 0.4064 0.3325 41.0670 104.4457

H = 3

ARDL 0.5349 0.4012 63.9732 254.8887

LSTM 0.3353 0.3732 41.1261 199.6160

Naive 1.0265 0.7700 118.9202 688.5146

RF 0.6306 0.4323 69.2605 262.5694

SVR 0.5373 0.4017 64.7472 263.4395

H = 6

ARDL 0.6536 0.4471 47.6812 85.8452

LSTM 0.4801 0.4587 36.0240 54.8546

Naive 1.4918 1.1382 120.6361 271.2341

RF 0.7062 0.5161 50.0000 95.5245

SVR 0.6772 0.4611 48.5897 85.7147

Source: own computations
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Table 9. Performance metrics for the structural break regime scenario

Method Mean(RMSE) sd(RMSE) Mean(MAPE) sd(MAPE)

H = 1

ARDL 0.4034 0.3301 4.1605 3.5618

LSTM 0.3620 0.3599 3.7435 2.9520

Naive 0.3972 0.3228 4.0664 3.4248

RF 0.4493 0.3503 4.6229 3.8844

SVR 0.4157 0.3290 4.2514 3.5201

H = 3

ARDL 0.4310 0.3044 4.3693 3.2208

LSTM 0.3642 0.2721 3.7325 2.8881

Naive 0.6877 0.5118 6.8433 5.0316

RF 0.4475 0.3498 4.5557 3.6537

SVR 0.4275 0.2971 4.3448 3.1650

H = 6

ARDL 0.4334 0.3291 4.5163 3.7019

LSTM 0.3144 0.3378 3.3968 2.9580

Naive 1.0008 0.7415 10.3928 8.2422

RF 0.5165 0.3963 5.5304 4.8589

SVR 0.4455 0.3311 4.6617 3.8107

Source: own computations

Across all simulated scenarios and forecast horizons, the learning-based models (ARDL, 
RF, SVR, LSTM) consistently outperform the naïve benchmark. Aggregating results over repli-
cations shows lower errors for our models on RMSE and MAE, with improvements that become 
more pronounced as  the horizon lengthens. Formal Diebold–Mariano tests against the naïve 
forecast corroborate these gains, indicating that the error reductions are not due to sampling 
variability but reflect genuine predictive improvements.

The performance edge is robust to the underlying data-generating mechanism. ARDL pro-
vides stable, across-the-board accuracy, SVR excels when short-memory or moving-average 
features dominate, and LSTM delivers competitive (often best-in-class) long-horizon forecasts 
when nonlinearities or regime changes are present. While the naïve forecast can be competitive 
at h=1 in some scenarios, it deteriorates rapidly with horizon, whereas our models either main-
tain their advantage or widen it. This pattern is consistent across the scenario-specific win-rates 
and the paired tests versus the benchmark.
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From a practical standpoint, these findings justify replacing the naïve approach with our 
modeling toolkit in applications where accuracy beyond the next step matters. The combination 
of lower average errors, statistically significant improvements, and complementary strengths 
across methods suggests that practitioners can expect reliable gains over the naïve baseline, 
with ARDL as a robust default and SVR/LSTM offering additional benefits when the data ex-
hibit MA structure or nonlinear/regime-shift dynamics.

4.2 ARDL models for Romania using quarterly data and 
sentiment index 

The ADF test on seasonally adjusted datasets indicated that, except for the sentiment index, 
which is stationary in level at a 1% significance level, the other series are integrated of order 
one. The ARDL models used to develop HICP forecasts are presented in Table 10. Multicol-
linearity is not an issue in this case. Additionally, there is no significant correlation between 
predictors, as Pearson’s coefficient is 0.202.

Table 10. The ARDL estimates

Indicator Coef./stat. with prob in brackets

Model 1 Model 2 Model 3

HICPt-1
       0.836*** 

(0.000)
      0.833***

(0.000)
       0.828*** 

(0.066)

sit
–0.060* 
(0.081)

–0.059*
(0.081) –

unemploymentt – –0.071* 
(0.061)

–0.079* 
(0.057)

constant     16.884** 
(0.016)

    17.710** 
(0.015)

18.515 
(0.011)

Breusch-Godfrey test for 
one lag

1.923 
(0.1655)

1.852
(0.173)

2.334 
(0.126)

White test 4.155
(0.5272)

7.536 
(0.581)

3.935
(0.558)

Shapiro-Wilk test 0.899 
(0.184)

0.807 
(0.197)

0.903 
(0.179)

Ramsey Reset Test 2.456 
(0.117)

2.356
(0.124)

1.315 
(0.251)

Source: own computations

Note: *,**,*** suggest significance at 10%,5% and 1% level, respectively. p-values in brackets
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These ARDL models form the basis of our HICP forecasting method, and their prediction 
accuracy is evaluated. Table 11 shows that Model 1, which includes the previous period’s HICP 
and the current period’s sentiment index, outperforms the other ARDL models based on MAPE 
and MSE.

Table 11. Inflation forecasts based on ARDL models and their accuracy 
(horizon 2023Q1-2023Q4)

Time Model 1 Model 2 Model 3

2023Q1 114.19 114.23 114.46

2023Q2 112.33 112.42 112.87

2023Q3 110.81 110.94 111.57

2023Q4 109.72 109.89 110.49

MAPE 1.73% 1.81% 2.15%

MSE 4.53 5.02 7.36

Source: own computations

4.3  Machine learning techniques for quarterly data  
 for Romania

The best-performing models are identified by the hyperparameter values listed in Table 12. We 
trained the models using these parameters and then used them to predict the next four HICP 
values.
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Table 12. The optimal values for the hyperparameters of the machine 
learning methods for quarterly data, for Romania

Method Hyper- 
parameters

Values of the hyperparameters for

Univariate 
setting

Multivariate setting

HICP-
Unemployment

HICP-Sentiment 
index

HICP-Unemployment-
Sentiment Index

RF

n_estimators 75 200 50 50

max_depth None None None None

min samples 
split 15 15 5 2

max_features 1.0 1.0 1.0 1.0

SVR

C 4 1 1 6

gamma 0.7 0.6 0.4 0.1

Coef0 1.0 0.01 0.01 2.5

epsilon 0.01 0.01 0.01 0.01

kernel poly poly poly poly

degree 1 1 1 1

LSTM

Recurrent 
dropout layer 1 0.1 0.2 0.0 0.1

Recurrent 
dropout layer 2 0.1 0.1 0.1 0.0

Dropout layer 1 0.2 0.2 0.2 0.2

Dropout layer 2 0.0 0.1 0.0 0.2

Number 
of neurons 512 512 512 512

Batch size 1 1 1 1

L2 for 
the kernel_
regularizer

0.0001 0.003 0.003 0.003

Source: own computations



Prague Economic Papers, 2025, 34 (4), 495–558, https://doi.org/10.18267/j.pep.898 528

Bogdan Oancea, Mihaela Simionescu, Richard Pospisil

While Table 11 reports three ARDL forecasts for 2023Q1–2023Q4 with overall accuracy 
metrics: MAPE = 1.73% (Model 1), 1.81% (Model 2), and 2.15% (Model 3) with the corre-
sponding MSE values approximately 4.53, 5.02, and 7.36, Table 13 presents the performance 
of RF, SVR, and LSTM under four feature settings. In the univariate setting, the machine learn-
ing methods significantly outperform the ARDL models by achieving lower test errors: RF 
has a test MSE of 8.13 with a MAPE of 2.20%, SVR has a test MSE of 1.40 with a MAPE 
of 0.91%, and LSTM has a test MSE of 0.55 with a MAPE of 0.65%. Both SVR and LSTM 
improved on ARDL Model 1 (with a MAPE of 1.73%) in the univariate test sample, with LSTM 
providing the largest reduction in MAPE. In the multivariate HICP-unemployment setup, SVR 
(test MSE = 3.05, MAPE 1.28%) and LSTM (test MSE = 3.86, MAPE 1.46%) again achieve 
lower test MAPE than ARDL Model 1, which has a MAPE of 1.73%. Conversely, RF (2.29% 
MAPE) performs worse than ARDL. In the HICP–sentiment multivariate case, RF and LSTM 
perform poorly on the test set, with RF showing a MAPE of 2.30% and LSTM 2.51%, while 
SVR’s test MAPE (1.75%) is roughly equal to ARDL Model 1’s (1.73%). Here, ARDL remains 
competitive and, in some comparisons (Model 1 versus RF/LSTM), even slightly better. Finally, 
in the comprehensive HICP–unemployment–sentiment model, machine learning methods show 
mixed results: RF has a test MAPE of 2.56% (worse than ARDL), SVR scores 1.72% (similar 
or slightly better), and LSTM achieves 1.12% (better than ARDL Model 1). In summary, ML 
methods - particularly SVR and LSTM - can outperform ARDL in several contexts, notably 
the univariate and HICP-unemployment-sentiment cases. However, ARDL remains competi-
tive and sometimes superior when only sentiment indexes are included. The ranking principally 
depends on the covariates chosen.

On the quarterly Romanian series, the LSTM model that incorporates HICP and unem-
ployment fits the  training data very well but shows a  clear drop in out-of-sample accuracy, 
indicating that its high complexity leads it to capture noise rather than the underlying signal. 
In contrast, the SVR approach, due to its built-in margin maximization and relatively simple 
parameterization, maintains consistent performance between the training and test sets, demon-
strating stronger generalization on unseen quarterly data. When we experimented with reduc-
ing the LSTM’s size and increasing its regularization, the gap between training and test per-
formance narrowed, confirming that the original architecture was too flexible for the limited 
volume of  quarterly data. These findings emphasize that even at  lower frequencies, models 
with effective capacity control can provide more stable forecasts than over-parameterized deep 
learning networks.
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Table 13. The performance metrics in the case of RF, SVR and LSTM network

Setting Data set
RF SVR LSTM

MAE MSE MAPE MAE MSE MAPE MAE MSE MAPE

Univariate set-
ting

Train data set 1.13 2.48 1.06% 1.23 4.47 1.16% 0.98 1.83 0.92%

Test data set 2.40 8.13 2.20% 1.00 1.40 0.91% 0.70 0.55 0.65%

Multivariate 
setting: HICP- 
Unemployment

Train data set 1.12 2.43 1.06% 1.12 4.33 1.12% 0.60 0.67 0.57%

Test data set 2.51 7.88 2.29% 1.40 3.05 1.28% 1.59 3.86 1.46%

Multivariate set-
ting: HICP-Senti-
ment Index

Train data set 0.74 1.18 0.70% 1.17 3.97 1.11% 0.35 0.23 0.33%

Test data set 2.51 9.63 2.30% 1.93 3.98 1.75% 2.78 11.33 2.51%

Multivariate 
setting: 
HICP-Unemploy-
ment-Sentiment 
Index

Train data set 0.68 0.97 0.62% 1.13 3.88 1.07% 0.36 0.26 0.34%

Test data set 2.79 11.05 2.56% 1.88 4.23 1.72% 1.22 2.02 1.12%

Source: own computations

The results highlight the importance of using multiple economic indicators in forecasting 
models. LSTM networks, with their ability to handle complex, nonlinear relationships and in-
teractions among predictors, consistently outperformed RF and SVR in this study. However, 
when only the sentiment index is included, the ARDL models demonstrated a greater capacity 
to provide more accurate inflation forecasts over a short-term horizon.

4.4  ARDL models for CEE countries using monthly data and ESI 

The results of the unit root test show that the data series for HICP and unemployment are I(1), 
while the  series for ESI are I(0) for CEE countries. This enables the use of ARDL models. 
The  inflation rate in  levels is I(1) at a 1% significance level, which meets the condition for 
the dependent variable to be non-stationary.

The results shown in Table 14 display ARDL estimations for CEE countries from 2006M1 
to 2024M12. Unemployment significantly reduced HICP only in Bulgaria, the Czech Republic, 
Slovakia, Slovenia, Latvia, and Lithuania, while ESI positively and significantly affected HICP 
in Lithuania, Bulgaria, Czechia, Estonia, and Slovenia.
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Table 14. The results of estimations for ARDL models for CEE countries 
(2006M1- 2024M12)

Variable 
Countries

BG CZ EE HU LV LT PL RO SK SI

HICPt-1
1.343*** 
(0.000)

1.086*** 
(0.000)

1.277*** 
(0.000)

1.428*** 
(0.000)

1.331*** 
(0.000)

1.529*** 
(0.000)

1.358***
(0.0606)

1.425*** 
(0.000)

1.445*** 
(0.000)

1.169*** 
(0.000)

HICPt-2
–0.391*** 
(0.0005)

0.089 
(0.366)

–0.005 
(0.958)

–0.264** 
(0.025)

–0.052 
(0.638)

–0.648*** 
(0.000)

–0.210* 
(0.0659)

–0.423*** 
(0.000)

–0.672*** 
(0.000)

0.133 
(0.206)

HICPt-3
0.261** 
(0.018)

–0.177*** 
(0.009)

–0.267*** 
(0.0001)

–0.029 
(0.808)

–0.281***  
(0.000)

0.344*** 
(0.005)

–0.008 
(0.942) – 0.225*** 

(0.0007)
–0.150 
(0.155)

HICPt-4
–0.213*** 
(0.0012) – – –0.132* 

(0.051) – –0.224*** 
(0.0009)

–0.138** 
(0.040) – – –0.150** 

(0.033)

ESIt
0.001* 
(0.076)

0.023** 
(0.013)

0.010* 
(0.066) – –0.0003 

(0.953)
0.004* 

(0.0696) – –0.005* 
(0.205)

0.004 
(0.993)

0.017* 
(0.053)

ESIt-1 – –0.029* 
(0.060) – – – – –0.025** 

(0.016) – – –0.034*** 
(0.010)

ESIt-4 – – – 0.028*** 
(0.005) – – – – – –

unemploy-
mentt

–0.030** 
(0.036)

–0.078* 
(0.075)

0.003 
(0.817) 

–0.015 
(0.532)

–0.023* 
(0.099)

–0.009* 
(0.084)

–0.017 
(0.185)

–0.059** 
(0.039)

–0.588* 
(0.078)

–0.020* 
(0.092)

constant 0.375 
(0.562)

1.273 
(0.285)

–1.350 
(0.105)

0.215 
(0.748)

0.615 
(0.444)

–0.263 
(0.677)

0.161 
(0.771)

0.934 
(0.143)

0.452 
(0.639)

–0.114 
(0.804)

Breusch-God-
frey Serial 
Correlation 
LM Test for 
lag=1: stat.

0.009 
(0.9207)

1.132 
(0.2873)

5.668 
(0.0173)

1.147 
(0.2246)

0.461 
(0.4971)

3.678 
(0.055)

2.437 
(0.1185)

1.153 
(0.2829)

2.502 
(0.113)

2.858 
(0.0909)

Breusch-God-
frey Serial 
Correlation 
LM Test for 
lag=2: stat.

0.741 
(0.6902)

3.766 
(0.1521)

6.478 
(0.0393)

2.475 
(0.2901)

0.591 
(0.7441)

2.174 
(0.140)

2.409 
(0.122)

1.153 
(0.5618)

3.567 
(0.168)

3.388 
(0.1837)

ARCH het-
eroskedastic-
ity test: stat.

0.584 
(0.4445)

0.211 
(0.6459)

5.924 
(0.014)

0.573 
(0.4488)

4.740 
(0.0295)

2.901 
(0.0885)

5.780 
(0.0162)

0.008 
(0.925)

0.005 
(0.9433)

6.616 
(0.0101)

Jarque-Bera 
test: stat. 
(p-value 
in brackets)

8.629 
(0.00001)

8.786 
(0.000)

4.167 
(0.124)

3.456 
(0.063)

3.879 
(0.143)

1.270 
(0.529)

4.556 
(0.102)

2.997 
(0.102)

3.613 
(0.164)

3.374 
(0.185)

Ramsey Reset 
Test: stat.

0.0104 
(0.9174)

0.205 
(0.6506)

0.175 
(0.6754)

0.785 
(0.3755)

0.040 
(0.8408)

2.307 
(0.1288)

0.248 
(0.6178)

0.043 
(0.8349)

0.039 
(0.1279)

0.529 
(0.4667)

Source: own computations in EViews 

Note: *,**,*** suggest significance at 10%, 5%, 1% level respectively. p-value in brackets
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The forecasting performance metrics in Table 15 show that the most accurate HICP fore-
casts using ARDL models are for Slovakia during 2025M1-2025M3.  

Table 15. The evaluation of HICP forecast accuracy by ARDL for CEE countries 
(2025M1-2025M3)

Country RMSE MSE MAE MAPE(%)

BG 2.005 4.020 2.004 1.411

CZ 1.677 2.812 1.664 1.076

EE 2.332 5.438 2.234 1.399

HU 1.560 2.433 1.502 0.870

LV 1.417 2.007 1.220 0.819

LT 2.467 6.086 2.460 1.585

PL 0.888 0.788 0.887 0.581

RO 1.114 1.240 1.099 0.707

SK 0.328 0.107 0.304 0.235

SI 2.514 6.320 2.501 1.695

Source: own computations in EViews

4.5 Machine learning techniques for monthly data for CEE 
countries with ESI

We use the same grid search process to determine the best hyperparameter values for the ma-
chine learning methods used, specifically RF, SVM, and LSTM. These values are listed for 
all countries in Tables A8-A10. The search space was identical to the one previously shown 
in Table 1.

We ran forecasting models using optimal hyperparameter values and calculated their per-
formance metrics. The results are shown in Tables 16-18.
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Table 16. The performance metrics for RF model under different settings

Setting Metric BG RO SK SI LT LV EE PL HU CZ

Univariate 
setting

MAPE Train 0.16% 0.13% 0.18% 0.44% 0.34% 0.46% 0.18% 0.11% 0.33% 0.17%

MSE Train 0.04 0.03 0.06 0.34 0.20 0.46 0.09 0.02 0.17 0.09

MAPE Test 2.68% 1.64% 1.94% 0.67% 2.57% 1.80% 1.76% 1.19% 2.35% 1.43%

MSE Test 14.73 6.90 8.42 1.05 16.44 8.20 8.59 3.48 16.90 493

HICP-Unem-
ployment

MAPE Train 0.30% 0.14% 0.09% 0.40% 0.33% 0.40% 0.17% 0.10% 0.16% 0.16%

MSE Train 0.15 0.03 0.02 0.30 0.20 0.30 0.08 0.02 0.06 0.09

MAPE Test 2.58% 2.19% 1.96% 1.34% 2.68% 1.77% 1.85% 1.44% 2.40% 1.49%

MSE Test 13.66 12.05 8.62 3.34 17.71 8.01 9.54 5.05 17.91 5.38

HICP-ESI

MAPE Train 0.16% 0.16% 0.11% 0.42% 0.33% 0.54% 0.42% 0.26% 0.32% 0.17%

MSE Train 0.04 0.05 0.03 0.31 0.20 0.58 0.54 0.12 0.20 0.12

MAPE Test 2.64% 2.38% 2.43% 0.65% 3.53% 2.74% 2.96% 1.70% 2.92% 1.33%

MSE Test 14.34 14.72 13.23 1.02 30.50 18.22 22.46 6.87 26.24 4.26

HICP-Unem-
ployment-ESI

MAPE Train 0.14% 0.16% 0.10% 0.41% 0.34% 0.41% 0.41% 0.11% 0.35% 0.17%

MSE Train 0.03 0.05 0.03 0.36 0.21 0.27 0.31 0.03 0.35 0.13

MAPE Test 2.67% 2.83% 2.15% 1.07% 3.71% 2.29% 2.35% 1.82% 2.93% 1.48%

MSE Test 14.75 21.33 10.33 2.18 34.85 13.34 14.29 7.81 26.25 5.39

Source: own computations
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Table 17. The performance metrics for SVR model under different settings

Setting Metric BG RO SK SI LT LV EE PL HU CZ

Univariate 
setting

MAPE Train 0.39% 0.32% 0.24% 0.41% 0.43% 0.43% 0.46% 0.32% 0.42% 0.45%

MSE Train 0.30 0.24 0.20 0.32 0.35 0.45 0.57 0.22 0.34 0.79

MAPE Test 0.74% 0.35% 0.59% 0.42% 0.49% 0.41% 0.97% 0.18% 0.60% 0.52%

MSE Test 1.93 0.38 1.67 0.34 1.62 0.40 2.50 0.12 1.56 1.33

HICP- 
Unemploy-
ment

MAPE Train 0.35% 0.30% 0.23% 0.39% 0.37% 0.41% 0.47% 0.34% 0.42% 0.36%

MSE Train 0.25 0.20 0.20 0.31 0.34 0.43 0.62 0.19 0.34 0.76

MAPE Test 0.58% 0.31% 0.61% 0.34% 0.40% 0.39% 0.52% 0.23% 0.61% 0.51%

MSE Test 1.63 0.33 1.94 0.27 0.75 0.40 1.02 0.18 1.65 1.42

HICP-ESI

MAPE Train 0.34% 0.26% 0.33% 0.41% 0.37% 0.45% 0.44% 0.32% 0.35% 0.36%

MSE Train 0.24 0.21 0.23 0.32 0.35 0.44 0.53 0.22 0.29 0.76

MAPE Test 0.59% 0.34% 0.64% 0.28% 0.73% 0.22% 0.92% 0.22% 0.67% 0.47%

MSE Test 1.88 0.39 1.58 0.25 2.39 0.15 2.23 0.14 1.55 1.25

HICP-Un-
employ-
ment-ESI

MAPE Train 0.34% 0.26% 0.32% 0.39% 0.40% 0.45% 0.46% 0.31% 0.44% 0.35%

MSE Train 0.24 0.20 0.22 0.31 0.30 0.43 0.52 0.19 0.36 0.76

MAPE Test 0.59% 0.34% 0.64% 0.34% 0.68% 0.27% 0.97% 0.25% 0.64% 0.49%

MSE Test 1.88 0.29 1.22 0.26 1.98 0.24 2.45 0.20 1.66 1.20

Source: own computations
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Table 18. The performance metrics for the LSTM model under different 
settings

Setting Metric BG RO SK SI LT LV EE PL HU CZ

Univariate 
setting

MAPE Train 1.86% 6.98% 4.63% 5.13% 3.55% 5.24% 7.75% 2.84% 2.60% 8.55%

MSE Train 5.26 74.36 22.30 34.33 15.68 48.71 60.94 9.47 12.25 104.85

MAPE Test 6.64% 0.58% 0.89% 1.05% 0.31% 0.43% 2.31% 0.79% 0.22% 2.99%

MSE Test 89.33 0.87 1.74 1.91 0.27 0.58 14.13 1.47 0.27 21.53

HICP-Unem-
ployment

MAPE Train 1.50% 6.40% 4.00 4.60 3.10 4.70 7.00 2.50 2.20 7.90

MSE Train 4.20 61.17 18.00 28.00 12.50 41.00 53.00 7.60 10.00 90.00

MAPE Test 5.80 0.54% 0.85% 1.16% 0.33% 0.42% 2.51% 0.75 0.22% 2.52%

MSE Test 71.20 0.85 1.60 1.70 0.25 0.50 11.00 1.30 0.22 17.00

HICP-ESI

MAPE Train 1.40% 0.85% 7.1% 3.09% 3.16% 3.08% 2.97% 3.19% 3.2% 2.94%

MSE Train 2.81 1.13 53.69 19.12 23.88 15.45 12.32 25.47 24.76 21.11

MAPE Test 2.55% 0.10% 6.43% 3.16% 3.22% 3.21% 3.06% 3.18% 3.22% 3.50%

MSE Test 14.23 0.04 70.23 34.82 35.2 35.13 31.99 34.92 35.2 29.28

HICP-Un-
employ-
ment-ESI

MAPE Train 1.21% 0.73% 6.50% 0.95% 1.54% 2.03% 2.82% 1.01% 1.82% 3.85%

MSE Train 2.23 0.90 50.01 2.54 3.22 5.40 6.56 1.30 2.21 12.32

MAPE Test 3.50% 0.31% 5.55% 0.95% 0.45% 0.92% 4.21% 0.80% 0.93% 4.50%

MSE Test 23.21 0.44 45.03% 1.75 0.32 0.91 16.57 1.21% 1.04% 25.25

Source: own computations

In the experiments reported, modern ML methods - particularly the LSTM network and 
SVR - offer clear, practically meaningful improvements over the ARDL baselines in  many 
country × feature-set combinations. Overall, the LSTM often achieves the lowest out-of-sample 
error in the univariate designs and several multivariate configurations, while SVR frequently 
matches or slightly exceeds ARDL when unemployment or sentiment are used as predictors. 
RFs, once properly tuned, also provide useful gains in various settings, especially when addi-
tional covariates are available. In summary, Tables 16-18 demonstrate that ML methods are not 
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only competitive but also consistently enhance short-horizon HICP forecasting accuracy in our 
panel.

Two facts in the results make the ML advantage particularly credible. First, the monthly ex-
periments use longer training sequences (nearly two decades), which gives data-hungry models 
like LSTM the sample size they need to learn nonlinear lag structures - the observed reductions 
in  test error therefore reflect genuine pattern learning rather than chance. Second, improve-
ments are not limited to in-sample fit: in many country-setting combinations, the test MAPEs 
are lower (or only modestly higher) than training MAPEs for ML methods when unemployment 
is included, indicating stable generalization rather than pure overfitting. In the HICP-Unem-
ployment configuration, SVR and LSTM both show consistent test MAPE reductions rela-
tive to ARDL (SVR test MAPE often ≈ 0.20–0.6%, LSTM often ≈ 0.5–1.5%), and RF shows 
meaningful gains after tuning in several countries as well (test MAPEs commonly falling into 
the low single digits).

In summary, the strong agreement between Romania’s quarterly results and the full CEE 
monthly LSTM outcomes, along with the gap compared to ARDL benchmarks, confirms that 
these deep-learning models reliably generalize across different frequencies and economies, pro-
viding a clear forecasting benefit for CEE countries.

5.  Conclusions

This study provides a valuable contribution to empirical forecasting. It shows the effectiveness 
of using LSTM networks for inflation forecasting, consistent with traditional economic theo-
ry. Additionally, including sentiment analysis results in ARDL models can improve forecast 
accuracy. Overall, these findings indicate that multivariate approaches, especially those incor-
porating sentiment indices and unemployment rates, significantly enhance forecast precision. 
The use of TimeSeriesSplit for cross-validation maintains the temporal integrity of our mod-
els, offering reliable performance assessments. These results suggest that advanced machine 
learning techniques, combined with comprehensive data inputs, can greatly improve economic 
forecasting capabilities.

Despite the  importance of  these empirical findings, the research has several limitations 
that highlight areas for future study. First, a key limitation of this paper is its focus on a short 
forecasting horizon - covering four quarters with high inflation in Romania due to the interna-
tional and domestic economic context, and three months for CEE countries. The study aimed 
to analyze short-term periods of high inflation under extreme economic conditions. This situa-
tion occurs over brief periods because of interventions by the central bank. Specifically, the Na-
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tional Bank of Romania managed inflation by gradually raising interest rates, making the high 
inflation episode temporary. Therefore, applying the proposed forecasting methods over a short 
horizon is justified, and they could be useful in similar future scenarios. From this perspective, 
the paper deserves praise for employing quantitative methods that are well-suited to the eco-
nomic context of the countries analyzed. The short-term forecasting horizon is closely relat-
ed to the longer-term transmission of monetary policy. This process is complex and involves 
a time lag, which affects how short-term interest rates influence economic growth and inflation. 
The actual transmission occurs through various channels, including, besides the interest rate 
channel, the exchange rate channel and the asset price channel, all of which play important 
roles. Changes in the exchange rate and asset prices immediately impact the inflation rate once 
the transmission cycle ends. This process typically spans about 12-18 months, which is much 
longer than the forecasting horizon considered in this paper.

Second, the study is limited to CEE countries because they experienced the highest infla-
tion in the EU, and it was conducted within a limited time frame. We considered limited com-
puting resources when choosing the number of countries to include. Nevertheless, optimizing 
the LSTM took more than a week of computing time on a computer with an Intel(R) Xeon(R) 
Gold 6226R CPU @ 2.90GHz processor, 16 cores, and 192 GB of RAM.

Third, the  methodology is limited to  a  few methods and economic variables. Besides 
the economic variables mentioned earlier, there are influences that are less certain and hard 
to quantify but also play a significant role. This could include the structure of the consumer 
basket, which, according to the harmonized index of consumer prices, changes in EU countries 
roughly every five years. Since inflation rates can be accelerated by various influences within 
months, reach a peak, and then gradually decline, the structure of the consumer basket may al-
ready seem inappropriate and outdated. It is also important to consider political influences like 
the political cycle, natural factors, and others. These limitations, by their nature, could not and 
have not been addressed in the paper.

Fourth, the machine learning techniques are usually employed on  long time series, but 
in this case, the series are quite short due to limited data availability in inflation reports, which 
encourages overfitting. Therefore, future studies should consider other types of econometric 
models and machine learning techniques, longer time series, and more explanatory variables 
to predict inflation (such as various types of interest rates used by central banks to control infla-
tion). Additionally, future research could also include more countries with similar characteris-
tics and a longer forecasting horizon.
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Figure A2. Unemployment rates (%) for CEE countries 

Source: own computations
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Figure A3. HICP (index, 2015=100), Sentiment index, and Unemployment (%) 
for Romania – quarterly data

Source: own computations
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Table A1. Descriptive statistics for quarterly Unemployment rates and HICP 
(2015=100) data series for Romania

Descriptive statistics Unemployment (%)  HICP 

Average 6.68 104.92

Lowest value 3.7 98.3

Median 6.05 104.82

Highest value 9.3 116.37

Standard dev. 1.77 3.78

Jarque-Bera stat 6.93 17.03 

Source: own computations

Table A2. CEE countries

Country Abbreviation

Bulgaria BG

Romania RO

Slovakia SK

Slovenia SI

Lithuania LT

Latvia LV

Estonia EE

Poland PL

Hungary HU

Czechia CZ
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Table A3. Descriptive statistics for monthly data for ESI for CEE countries

BG RO SK SI LT LV EE PL HU CZ

Average 99.70 98.66 98.52 99.14 100.11 98.60 98.07 100.94 99.60 98.37

Lowest value 54.9 57.7 49.1 61.3 60.9 60.9 69 49.6 67.2 64.2

Median 100.6 101.2 99.4 99.5 100.3 100.2 100.1 100.9 98.7 98

Highest value 122.1 114.4 123.5 116.5 118.2 119.2 119.8 121.9 121.2 117.3

Standard dev. 10.30 9.52 10.51 10.99 10.67 10.11 10.23 10.61 11.11 10.53

Jarque-Bera stat 22.34 64.02 125.98 28.40 119.32 151.36 15.73 184.76 3.68 5.17

Source: own computations

Table A4. Descriptive statistics for monthly data for HICP (2015=100) for CEE 
countries

BG RO SK SI LT LV EE PL HU CZ

Average 103.30 101.92 101.78 104.07 105.65 104.32 104.56 104.46 105.91 105.82

Lowest value 73.81 68.12 81.44 84.35 73.29 69.88 70.73 80.40 69.36 82.70

Median 100.99 99.38 100.55 100.28 100.69 99.90 100.41 100.50 100.25 100

Highest value 138.99 152.96 128.98 145.18 151.95 146.54 157.20 150.90 169.30 152.90

Standard dev. 14.85 20.78 11.40 15.64 20.34 18.41 21.80 17.92 24.77 18.66

Jarque-Bera stat 25.18 17.62 25.90 70.80 36.75 28.88 36.02 62.26 58.13 73.42

Source: own computations

Table A5. Descriptive statistics for monthly data for unemployment rates (%) 
for CEE countries

BG RO SK SI LT LV EE PL HU CZ

Average 8.03 6.92 9.82 6.24 8.96 9.94 7.68 6.78 6.51 4.55

Lowest value 3.8 4.7 5 3.2 4 5.3 3.9 2.6 3 1.8

Median 7.1 6.5 10 5.6 7.6 8.3 6.7 6.9 6.1 4.3

Highest value 14.1 9.6 15 10.8 18.3 20.8 19.4 16 11.4 7.9

Standard dev. 3.22 1.50 3.34 2.12 3.75 4.12 3.27 3.38 2.70 1.97

Jarque-Bera stat 20.70 24.85 24.25 19.89 36.29 55.01 140.96 12.71 23.03 24.82

Source: own computations
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Table A6. DM and the Wilcoxon tests for ARDL/RF/SVR/LSTM versus naïve forecast 

Scenario Horizon Method Mean(d) DM stat DM
 p (one_sided)

Wilcoxon
p (one_sided)

Baseline  
linear

1

ARDL 0.0029 0.2399 0.5947 0.6011

RF 0.0543 3.1106 0.9989 0.9992

SVR 0.0162 1.2308 0.8901 0.8872

LSTM 0.0932 3.4888 0.9997 0.9985

3

ARDL -0.4607 -6.6451 0.0000 0.0000

RF -0.4080 -6.4946 0.0000 0.0000

SVR -0.4658 -6.9860 0.0000 0.0000

LSTM -0.3966 -5.5153 0.0000 0.0000

6

ARDL -1.2506 -7.3427 0.0000 0.0000

RF -1.1448 -6.9299 0.0000 0.0000

SVR -1.2404 -7.3811 0.0000 0.0000

LSTM -1.1396 -6.8622 0.0000 0.0000

High  
persistence

1

ARDL 0.0014 0.1237 0.5492 0.5398

RF 0.1994 5.6820 1.0000 1.0000

SVR 0.2319 5.9683 1.0000 1.0000

LSTM 0.5050 7.7522 1.0000 1.0000

3

ARDL -0.5450 -6.8334 0.0000 0.0000

RF 0.0170 0.2337 0.5923 0.1434

SVR -0.3223 -5.9496 0.0000 0.0000

LSTM -0.0302 -0.3245 0.3730 0.4442

6

ARDL -1.4910 -7.5974 0.0000 0.0000

RF -0.5193 -3.5409 0.0002 0.0002

SVR -1.1520 -6.8669 0.0000 0.0000

LSTM -0.9459 -4.7525 0.0000 0.0000

MA 
noninvertible

1

ARDL -0.1819 -3.3872 0.0004 0.0000

RF -0.1701 -3.1801 0.0009 0.0000

SVR -0.1872 -3.6338 0.0002 0.0001

LSTM 0.1831 2.0641 0.9798 0.9243

3

ARDL -0.3499 -5.7643 0.0000 0.0000

RF -0.2688 -4.3489 0.0000 0.0000

SVR -0.3659 -6.1720 0.0000 0.0000

LSTM -0.0249 -0.3079 0.3792 0.2693

6

ARDL -0.4799 -4.7069 0.0000 0.0000

RF -0.5080 -5.4918 0.0000 0.0000

SVR -0.5377 -5.5876 0.0000 0.0000

LSTM -0.1384 -1.2111 0.1136 0.2381
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Scenario Horizon Method Mean(d) DM stat DM
 p (one_sided)

Wilcoxon
p (one_sided)

Non linear 
regime

1

ARDL -0.1054 -3.4225 0.0004 0.0004

RF 0.0141 0.3733 0.6453 0.2139

SVR -0.1148 -3.4592 0.0003 0.0001

LSTM 0.2521 2.5389 0.9941 0.9261

3

ARDL -1.1974 -7.8564 0.0000 0.0000

RF -1.0601 -7.3643 0.0000 0.0000

SVR -1.1944 -7.8352 0.0000 0.0000

LSTM -0.9132 -5.0088 0.0000 0.0000

6

ARDL -2.8885 -8.3053 0.0000 0.0000

RF -2.7508 -8.0069 0.0000 0.0000

SVR -2.8445 -8.1756 0.0000 0.0000

LSTM -2.4743 -6.6978 0.0000 0.0000

Structural  
break

1

ARDL 0.0097 0.7550 0.7744 0.7319

RF 0.0625 2.9599 0.9983 0.9837

SVR 0.0190 1.3919 0.9172 0.9489

LSTM 0.0809 3.0657 0.9988 0.9814

3

ARDL -0.4556 -6.4634 0.0000 0.0000

RF -0.4116 -6.2130 0.0000 0.0000

SVR -0.4630 -6.7251 0.0000 0.0000

LSTM -0.3803 -5.1908 0.0000 0.0000

6

ARDL -1.2531 -7.3477 0.0000 0.0000

RF -1.1257 -6.7087 0.0000 0.0000

SVR -1.2411 -7.3415 0.0000 0.0000

LSTM -1.0934 -6.3340 0.0000 0.0000

Source: own computations
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Table A7.  Win rates for different simulation scenarios and their 95% CIs

Scenario Horizon Method Win_rate Win_rate_ci_low Win_rate_ci_high

Baseline linear

1

ARDL 0.225 0.170 0.285

LSTM 0.200 0.145 0.255

Naive 0.235 0.180 0.295

RF 0.165 0.115 0.220

SVR 0.175 0.125 0.230

3

ARDL 0.215 0.155 0.275

LSTM 0.230 0.175 0.290

Naive 0.190 0.140 0.245

RF 0.205 0.145 0.260

SVR 0.160 0.110 0.215

6

ARDL 0.265 0.205 0.325

LSTM 0.230 0.170 0.285

Naive 0.160 0.110 0.210

RF 0.185 0.135 0.240

SVR 0.160 0.110 0.210

High persistence

1

ARDL 0.295 0.235 0.360

LSTM 0.140 0.095 0.190

Naive 0.255 0.195 0.320

RF 0.180 0.130 0.235

SVR 0.130 0.085 0.180

3

ARDL 0.310 0.250 0.370

LSTM 0.185 0.130 0.240

Naive 0.120 0.075 0.165

RF 0.205 0.150 0.265

SVR 0.180 0.130 0.235

6

ARDL 0.390 0.320 0.460

LSTM 0.170 0.115 0.225

Naive 0.110 0.070 0.155

RF 0.145 0.100 0.195

SVR 0.185 0.130 0.240
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Scenario Horizon Method Win_rate Win_rate_ci_low Win_rate_ci_high

MA noninvertible

1

ARDL 0.200 0.145 0.260

LSTM 0.215 0.160 0.275

Naive 0.195 0.140 0.250

RF 0.190 0.135 0.250

SVR 0.200 0.145 0.255

3

ARDL 0.230 0.170 0.290

LSTM 0.210 0.155 0.265

Naive 0.200 0.145 0.255

RF 0.185 0.135 0.240

SVR 0.175 0.125 0.230

6

ARDL 0.195 0.140 0.255

LSTM 0.220 0.160 0.280

Naive 0.195 0.145 0.250

RF 0.250 0.190 0.310

SVR 0.140 0.095 0.190

Non linear regime

1

ARDL 0.225 0.170 0.285

LSTM 0.170 0.120 0.225

Naive 0.180 0.130 0.235

RF 0.175 0.125 0.230

SVR 0.250 0.190 0.310

3

ARDL 0.195 0.140 0.250

LSTM 0.245 0.185 0.305

Naive 0.175 0.125 0.230

RF 0.170 0.120 0.225

SVR 0.215 0.160 0.275

6

ARDL 0.185 0.135 0.235

LSTM 0.230 0.175 0.290

Naive 0.175 0.125 0.225

RF 0.230 0.175 0.290

SVR 0.180 0.130 0.235
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Scenario Horizon Method Win_rate Win_rate_ci_low Win_rate_ci_high

Structural break

1

ARDL 0.215 0.160 0.270

LSTM 0.200 0.145 0.255

Naive 0.225 0.170 0.285

RF 0.205 0.150 0.265

SVR 0.155 0.105 0.205

3

ARDL 0.185 0.130 0.240

LSTM 0.255 0.200 0.315

Naive 0.170 0.120 0.225

RF 0.230 0.175 0.290

SVR 0.160 0.110 0.215

6

ARDL 0.195 0.145 0.250

LSTM 0.260 0.200 0.320

Naive 0.175 0.125 0.230

RF 0.195 0.140 0.250

SVR 0.175 0.120 0.230

Source: own computations
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Table A8. The optimal values for the hyperparameters of the RF method

Country Hyperparameters

Values of the hyperparameters for

Univariate 
setting

Multivariate setting

HICP- 
Unemployment HICP-ESI HICP-Unemploy-

ment-ESI

BG

n_estimators 150 50 50 150

max_depth None 5 10 None

min_samples_split 2 2 2 2

max_features 0.9 0.7 0.9 0.7

RO

n_estimators 200 100 50 50

max_depth 10 10 10 None

min_samples_split 2 2 2 2

max_features 1.0 0.9 0.5 0.9

SK

n_estimators 200 50 100 50

max_depth 5 10 10 None

min_samples_split 2 2 2 2

max_features 0.9 0.9 0.7 1.0

SI

n_estimators 75 50 100 75

max_depth 5 5 5 None

min_samples_split 10 10 10 12

max_features 1.0 1.0 1.0 0.7

LT

n_estimators 200 75 75 75

max_depth 5 5 5 5

min_samples_split 2 2 2 2

max_features 1.0 1.0 0.7 0.5
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LV

n_estimators 50 100 200 100

max_depth None 5 5 5

min_samples_split 10 5 10 2

max_features 1.0 0.9 1.0 0.5

EE

n_estimators 100 150 200 200

max_depth 10 10 None 5

min_samples_split 2 2 10 2

max_features 0.9 1.0 1.0 1.0

PL

n_estimators 200 150 150 150

max_depth None 10 5 None

min_samples_split 2 2 2 2

max_features 1.0 1.0 0.5 0.5

HU

n_estimators 50 75 50 75

max_depth 5 10 5 5

min_samples_split 2 2 2 2

max_features 0.5 0.9 1.0 0.5

CZ

n_estimators 150 50 50 75

max_depth 10 10 None None

min_samples_split 2 2 2 2

max_features 0.5 0.9 0.9 1.0

Source: own computations
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Table A9. The optimal values for the hyperparameters of the SVR method

Country Hyperparameters

Values of the hyperparameters for

Univariate 
setting

Multivariate setting

HICP-
Unemployment HICP-ESI HICP- 

Unemployment-ESI

BG

C 3 1 8 7

coef0 0.5 1.0 0.01 0.01

degree 2 1 1 1

epsilon 0.01 0.01 0.01 0.01

gamma 0.4 0.7 0.8 0.3

kernel poly poly poly poly

RO

C 1 9 7 6

coef0 2.5 2.5 2.5 2.0

degree 2 1 1 1

epsilon 0.01 0.01 0.01 0.01

gamma 0.6 4 0.9 0.9

kernel poly poly poly poly

SK

C 5 9 9 2

coef0 0.5 0.5 0.5 1.0

degree 1 1 1 1

epsilon 0.01 0.01 0.01 0.01

gamma 0.9 0.2 0.8 0.7

kernel poly poly poly poly

SI

C 8 2 4 7

coef0 0.5 0.5 0.01 4

degree 1 1 1 1

epsilon 0 0.01 0.01 0.01

gamma 0.8 0.9 0.1 0.6

kernel poly poly poly poly

LT

C 9 4 7 5

coef0 0.5 0.5 1.0 1.0

degree 1 1 1 1

epsilon 0.01 0.01 0.01 0.01

gamma 0.6 0.8 0.6 0.8

kernel poly poly poly poly
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LV

C 9 9 6 3

coef0 0.01 0.01 2.0 0.01

degree 1 1 1 1

epsilon 0.01 0.01 0.01 0.01

gamma 0.9 0.4 0.9 0.6

kernel poly poly poly poly

ES

C 9 8 9 9

coef0 0.5 2.5 2.0 2.0

degree 1 1 1 1

epsilon 0.01 0.01 0.01 0.01

gamma 0.9 0.7 0.5 0.4

kernel poly poly poly poly

PL

C 7 4 2 6

coef0 2.0 2.0 2.5 1.0

degree 1 1 1 1

epsilon 0.01 0.01 0.01 0.01

gamma 0.8 0.7 0.2 0.9

kernel poly poly poly poly

HU

C 3 9 9 2

coef0 1.0 0.01 0.5 1.0

degree 2 1 1 1

epsilon 0.01 0.01 0.01 0.01

gamma 0.9 0.5 0.6 0.6

kernel poly poly poly Poly

CZ

C 9 9 3 6

coef0 0.01 0.01 1.0 0.5

degree 1 1 1 1

epsilon 0.01 0.01 0.01 0.01

gamma 0.9 0.9 0.1 0.5

kernel poly poly poly poly

Source: own computations
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Table A10. The optimal values for the hyperparameters of the LSTM method

Country Hyperparameters

Values of the hyperparameters for

Univariate  
setting

Multivariate setting  

HICP- 
Unemployment HICP-ESI HICP-Unemploy-

ment-ESI

BG

batch_size 8 1 1 8

Dropout layer 1 0.2 0.1 0.1 0.1

Dropout layer 2 0.0 0.1 0.1 0.1

L2 reg 0.0 0.2 0.1 0.2

recurrent_dropout 
layer 1 0.1 0.2 0.1 0.0

recurrent_dropout 
layer 1 0.1 0.1 0.1 0.1

units 128 512 512 512

RO

batch_size 1 1 1 1

Dropout layer 1 0.2 0.1 0.2 0.1

Dropout layer 2 0.1 0.1 0.2 0.0

L2 reg 0.1 0.2 0.2 0.2

recurrent_dropout 
layer 1 0.1 0.2 0.0 0.2

recurrent_dropout 
layer 1 0.1 0.2 0.1 0.1

units 128 512 128 512

SK

batch_size 1 1 1 1

Dropout layer 1 0.2 0.1 0.1 0.1

Dropout layer 2 0.1 0.0 0.2 0.2

L2 reg 0.1 0.0 0.2 0.2

recurrent_dropout 
layer 1 0.1 0.0 0.2 0.2

recurrent_dropout 
layer 1 0.1 0.2 0.1 0.1

units 128 512 512 512
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SI

batch_size 1 8 4 1

Dropout layer 1 0.2 0.1 0.2 0.1

Dropout layer 2 0.2 0.1 0.1 0.1

L2 reg 0.1 0.2 0.1 0.2

recurrent_dropout 
layer 1 0.1 0.0 0.1 0.1

recurrent_dropout 
layer 1 0.1 0.2 0.1 0.1

units 128 512 512 512

LT

batch_size 1 1 1 1

Dropout layer 1 0.1 0.0 0.1 0.2

Dropout layer 2 0.2 0.2 0.1 0.0

L2 reg 0.0 0.1 0.1 0.1

recurrent_dropout 
layer 1 0.1 0.2 0.1 0.1

recurrent_dropout 
layer 1 0.0 0.1 0.2 0.1

units 512 512 512 512

LV

batch_size 1 1 1 1

Dropout layer 1 0.0 0.1 0.1 0.1

Dropout layer 2 0.2 0.1 0.0 0.1

L2 reg 0.2 0.1 0.1 0.2

recurrent_dropout 
layer 1 0.0 0.2 0.1 0.1

recurrent_dropout 
layer 1 0.2 0.2 0.2 0.1

units 512 512 512 512

EE

batch_size 1 1 1 1

Dropout layer 1 0.1 0.1 0.1 0.2

Dropout layer 2 0.2 0.1 0.2 0.2

L2 reg 0.0 0.1 0.1 0.1

recurrent_dropout 
layer 1 0.1 0.2 0.2 0.1

recurrent_dropout 
layer 1 0.2 0.2 0.2 0.1

units 512 512 512 512
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PL

batch_size 1 1 1 1

Dropout layer 1 0.0 0.1 0.0 0.1

Dropout layer 2 0.0 0.1 0.1 0.1

L2 reg 0.1 0.2 0.2 0.2

recurrent_dropout 
layer 1 0.2 0.1 0.2 0.1

recurrent_dropout 
layer 1 0.2 0.2 0.2 0.1

units 512 512 512 512

HU

batch_size 1 1 1 1

Dropout layer 1 0.1 0.2 0.1 0.2

Dropout layer 2 0.1 0.0 0.2 0.0

L2 reg 0.1 0.0 0.2 0.2

recurrent_dropout 
layer 1 0.1 0.1 0.2 0.0

recurrent_dropout 
layer 1 0.1 0.2 0.1 0.1

units 512 512 512 512

CZ

batch_size 1 1 1 8

Dropout layer 1 0.2 0.1 0.2 0.2

Dropout layer 2 0.2 0.1 0.1 0.1

L2 reg 0.0 0.1 0.1 0.1

recurrent_dropout 
layer 1 0.1 0.2 0.2 0.1

recurrent_dropout 
layer 1 0.2 0.0 0.0 0.2

units 512 512 512 512

Source: own computations
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