Prague Economic Papers 2024, 33(3):261-276 | DOI: 10.18267/j.pep.863

Optimization Strategy for the Modeling and Estimation of Interactive Effects

Xiaohui Hu ORCID...
School of Economics, Jiaxing University, Jiaxing, China

Modeling policy effects in the context of high-dimensional data requires a balanced consideration of omitted interaction bias and overfitting problems. This paper investigates the role of machine learning algorithms in stabilizing estimates and demonstrates the possible regularization bias caused by common LASSO methods. To overcome the three problems simultaneously, post-double selection is used to screen for the interaction terms that need to be included in the model, and the variance estimates are expanded to measure the uncertainty of the interaction effects and marginal effects. Monte Carlo simulations analyze the main factors affecting conditional and non-linear relationships: covariance and sample size. The results of empirical examples show that different model settings and estimation methods can lead to observable differences in the conclusion of treatment effect heterogeneity, and in general, post-double selection has better performance than other estimation methods.

Klíčová slova: interactive effects, model misspecification, regularization bias, post-double selection
JEL classification: C13, C3, C5

Vloženo: 23. listopad 2023; Revidováno: 3. duben 2024; Přijato: 22. duben 2024; Zveřejněno: 28. červen 2024  Zobrazit citaci

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Hu, X. (2024). Optimization Strategy for the Modeling and Estimation of Interactive Effects. Prague Economic Papers33(3), 261-276. doi: 10.18267/j.pep.863
Stáhnout citaci

Reference

  1. Baker, A. C., Larcker D. F., Wang, C. C.Y. (2022). How Much Should We Trust Staggered Difference-in-differences Estimates Journal of Financial Economics, 144(2), 370-395. https://doi.org/10.1016/j.jfineco.2022.01.004 Přejít k původnímu zdroji...
  2. Beiser-McGrath, J., Beiser-McGrath, L. (2020). Problems with Products? Control Strategies for Models with Interaction and Quadratic Effects. Political Science Research and Methods, 8(4), 707-730. http://doi.org/10.1017/psrm.2020.17 Přejít k původnímu zdroji...
  3. Belloni, A., Chernozhukov, V., Kato, K. (2014). Uniform Post-selection Inference for Least Absolute Deviation Regression and Other Z-estimation Problems. Biometrika, 102(1), 77-94. http://doi.org/10.1093/biomet/asu056 Přejít k původnímu zdroji...
  4. Belloni, A., Chernozhukov, V., Hansen, C. (2016). Inference in High-dimensional Panel Models with an Application to Gun Control. Journal of Business & Economic Statistics, 34(4), 590-605. http://doi.org/10.1080/07350015.2015.1102733 Přejít k původnímu zdroji...
  5. Berry, W. D., DeMeritt, JHR., Esarey, J. (2016). Bias and Overconfidence in Parametric Models of Interactive Processes. American Journal of Political Science, 60(2), 521-539. http://doi.org/10.1111/ajps.12123 Přejít k původnímu zdroji...
  6. Criscuolo, C., Martin, R., Overman, H. (2019). Some Causal Effects of an Industrial Policy. American Economic Review, 109(1), 48-85. http://doi.org/10.1257/aer.20160034 Přejít k původnímu zdroji...
  7. Goodman-Bacon, A. (2021). Difference-in-differences with Variation in Treatment Timing. Journal of Econometrics, 225(2), 254-277. https://doi.org/10.1016/j.jeconom.2021.03.014 Přejít k původnímu zdroji...
  8. Hainmueller, J., Hazlett, C. (2014). Kernel Regularized Least Squares: Reducing Misspecification Bias with a Flexible and Interpretable Machine Learning Approach. Political Analysis, 22(2), 143-168. http://doi.org/10.1093/pan/mpt019 Přejít k původnímu zdroji...
  9. Mastrobuoni G, Pinotti, P. (2015). Legal Status and the Criminal Activity of Immigrants. American Economic Journal: Applied Economics, 7(2), 175-206. http://doi.org/10.1257/app.20140039 Přejít k původnímu zdroji...
  10. Powell, D. (2020). Quantile Treatment Effects in the Presence of Covariates. The Review of Economics and Statistics, 102(5), 994-1005. http://doi.org/10.1162/rest_a_00858 Přejít k původnímu zdroji...
  11. Qian, X. S., Kang, J., Tang, Y. L (2018). Industrial Policy, Efficiency of Capital Allocation and Firm's Total Factor Productivity - Evidence from a Natural Experiment in China. China Industrial Economics, (8), 42-59. http://doi.org/10.19581/j.cnki.ciejournal.2018.08.003 Přejít k původnímu zdroji...
  12. Rodrik D. (2012) Why Learn Nothing from Regressing Economic Growth on Policies. Seoul Journal of Economics, 25(2), 137-151.
  13. Sun, X. H., Zhang, J. N., Zheng, H. (2020). Will Replacing BT with VAT Promote the Integrated Development of Manufacturing and Services? China Industrial Economics, (8), 5-23. http://doi.org/10.19581/j.cnki.ciejournal.2020.08.001 Přejít k původnímu zdroji...
  14. Vansteelandt, S., VanderWeele T. J., Tchetgen, E. J. (2008). Multiply Robust Inference for Statistical Interactions. Journal of the American Statistical Association, 103(484), 1693-1704. http://doi.org/10.1198/016214508000001084 Přejít k původnímu zdroji...

Tento článek je publikován v režimu tzv. otevřeného přístupu k vědeckým informacím (Open Access), který je distribuován pod licencí Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), která umožňuje nekomerční distribuci, reprodukci a změny, pokud je původní dílo řádně ocitováno. Není povolena distribuce, reprodukce nebo změna, která není v souladu s podmínkami této licence.