Prague Economic Papers 2021, 30(1):115-130 | DOI: 10.18267/j.pep.760

Dynamic Herding Behaviour In the US Stock Market

Muhammad Yasir ORCID...a, A. Özlem Önder ORCID...b
a Department of Management Sciences, COMSATS University Islamabad, Attock Campus Pakistan
b Department of Economics, Ege University, Izmir, Turkey

This paper employs a dynamic herding approach that takes herding under different market regimes into account. We use daily data on US stock returns for the S&P 500 ranging from 2006 to 2017. The results of the linear model yield no evidence of herding. However, the findings of switching regression of Bai and Perron (1998) demonstrate evidence of herding during crisis regimes of S&P 500. The alternative approach of Markov switching also supports these findings.

Keywords: Behavioural finance, herding behaviour, cross-sectional dispersions, structural breaks
JEL classification: C22, C58, G01, G15, G41

Received: December 2, 2019; Revised: May 7, 2020; Accepted: June 18, 2020; Prepublished online: September 9, 2020; Published: February 4, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Yasir, M., & Özlem Önder, A. (2021). Dynamic Herding Behaviour In the US Stock Market. Prague Economic Papers30(1), 115-130. doi: 10.18267/j.pep.760
Download citation

References

  1. Bai, J., Perron, P. (1998). Estimating and Testing Linear Models with Multiple Structural Changes. Econometrica, 66(1), 47-78, https://doi.org/10.2307/2998540 Go to original source...
  2. Bai, J., Perron, P. (2003). Computation and Analysis of Multiple Structural Change Models. Journal of Applied Econometrics, 18(1), 1-22, https://doi.org/10.1002/jae.659 Go to original source...
  3. Balcilar, M., Demirer, R., Hammoudeh, S. (2013). Investor Herds and Regime-switching: Evidence from Gulf Arab Stock Markets. Journal of International Financial Markets, Institutions and Money, 23, 295-321, https://doi.org/10.1016/j.intfin.2012.09.007 Go to original source...
  4. Bekiros, S., Jlassi, M., Lucey, B. et al. (2017). Herding Behavior, Market Sentiment and Volatility: Will the Bubble Resume? The North American Journal of Economics and Finance, 42, 107-131, http://doi.org/10.1016/j.najef.2017.07.005 1062-9408 Go to original source...
  5. BenSaïda, A. (2017). Herding Effect on Idiosyncratic Volatility in US Industries. Finance Research Letters, 23, 121-132, http://doi.org/10.1016/j.frl.2017.03.001 1544-6123 Go to original source...
  6. Blasco, N., Corredor, P., Ferreruela, S. (2012). Does Herding Affect Volatility? Implications for the Spanish Stock Market. Quantitative Finance, 12(2), 311-327, https://doi.org/10.1080/14697688.2010.516766 Go to original source...
  7. Cakan, E., Balagyozyan, A. (2014). Herd Behaviour in the Turkish Banking Sector. Applied Economics Letters, 21(2), 75-79, https://doi.org/10.1080/13504851.2013.842629 Go to original source...
  8. Caparrelli, F., D'Arcangelis, A. M., Cassuto, A. (2004). Herding in the Italian Stock Market: a Case of Behavioral Finance. The Journal of Behavioral Finance, 5(4), 222-230, https://doi.org/10.1207/s15427579jpfm0504_5 Go to original source...
  9. Chang, E. C., Cheng, J. W., Khorana, A. (2000). An Examination of Herd Behavior in Equity Markets: An International Perspective. Journal of Banking & Finance, 24(10), 1651-1679, https://doi.org/10.1016/S0378-4266(99)00096-5 Go to original source...
  10. Chiang, T. C., Zheng, D. (2010). An Empirical Analysis of Herd Behavior in Global Stock Markets. Journal of Banking & Finance, 34(8), 1911-1921, https://doi.org/10.1016/j.jbankfin.2009.12.014 Go to original source...
  11. Choi, N., Sias, R. W. (2009). Institutional Industry Herding. Journal of Financial Economics, 94(3), 469-491, https://doi.org/10.1016/j.jfineco.2008.12.009 Go to original source...
  12. Christie, W. G., Huang, R. D. (1995). Following the Pied Piper: Do Individual Returns Herd around the Market? Financial Analysts Journal, 51(4), 31-37, https://doi.org/10.2469/faj.v51.n4.1918 Go to original source...
  13. Cingl, L. (2013). Does Herd Behaviour Arise Easier Under Time Pressure? Experimental Approach. Prague Economic Papers, 22(4), 558-582, https://doi.org/10.18267/j.pep.468 Go to original source...
  14. Davies, R. B. (1987). Hypothesis Testing when a Nuisance Parameter is Present only under the Alternative. Biometrika, 74(1), 33-43, https://doi.org/10.1093/biomet/74.1.33 Go to original source...
  15. Demirer, R., Kutan, A. M., Chen, C.-D. (2010). Do Investors Herd in Emerging Stock Markets?: Evidence from the Taiwanese Market. Journal of Economic Behavior & Organization, 76(2), 283-295, https://doi.org/10.1016/j.jebo.2010.06.013 Go to original source...
  16. Economou, F., Kostakis, A., Philippas, N. (2011). Cross-Country Effects in Herding Behaviour: Evidence from Four South European Markets. Journal of International Financial Markets, Institutions and Money, 21(3), 43-460, https://doi.org/10.1016/j.intfin.2011.01.005 Go to original source...
  17. Fama, E. F. (1965). The Behavior of Stock-market Prices. The Journal of Business, 38(1), 34-105, https://doi.org/10.1086/294743 Go to original source...
  18. Gleason, K. C., Mathur, I., Peterson, M. A. (2004). Analysis of Intraday Herding Behavior among the Sector ETFs. Journal of Empirical Finance, 11(5), 681-694, https://doi.org/10.1016/j.jempfin.2003.06.003 Go to original source...
  19. Goyal, A., Santa-Clara, P. (2003). Idiosyncratic Risk Matters! The Journal of Finance, 58(3), 975-1007, https://doi.org/10.1111/1540-6261.00555 Go to original source...
  20. Grinblatt, M., Titman, S., Wermers, R. (1995). Momentum Investment Strategies, Portfolio Performance, and Herding: A Study of Mutual Fund Behavior. The American economic Review, 85(5), 1088-1105. Available at: https://www.jstor.org/stable/i352629
  21. Hamilton, J. D. (1990). Analysis of Time Series Subject to Changes in Regime. Journal of Econometrics, 45(1-2), 39-70, https://doi.org/10.1016/0304-4076(90)90093-9 Go to original source...
  22. Hwang, S., Salmon, M. (2004). Market Stress and Herding. Journal of Empirical Finance, 11(4), 585-616, https://doi.org/10.1016/j.jempfin.2004.04.003 Go to original source...
  23. Kim, K. A., Nofsinger, J. R. (2005). Institutional Herding, Business Groups, and Economic Regimes: Evidence from Japan. The Journal of Business, 78(1), 213-242, https://doi.org/10.1086/426524 Go to original source...
  24. Klein, A. C. (2013). Time-variations in Herding Behavior: Evidence from a Markov Switching SUR Model. Journal of International Financial Markets, Institutions and Money, 26, 291-304, https://doi.org/10.1016/j.intfin.2013.06.006 Go to original source...
  25. Lakonishok, J., Shleifer, A., Vishny, R. W. (1992). The Impact of Institutional Trading on Stock Prices. Journal of Financial Economics, 32(1), 23-43, https://doi.org/10.1016/0304-405X(92)90023-Q Go to original source...
  26. Markowitz, H. (1952). Portfolio Selection. The Journal of Finance, 7(1), 77-91, https://doi.org/10.1111/j.1540-6261.1952.tb01525.x Go to original source...
  27. Nofsinger, J. R., Sias, R. W. (1999). Herding and Feedback Trading by Institutional and Individual Investors. The Journal of Finance, 54(6), 2263-2295, https://doi.org/10.1111/0022-1082.00188 Go to original source...
  28. Sias, R. W. (2004). Institutional Herding. The Review of Financial Studies, 17(1), 165-206, https://doi.org/10.1093/rfs/hhg035 Go to original source...
  29. Tan, L., Chiang, T. C., Mason, J. R. et al. (2008). Herding Behavior in Chinese Stock Markets: An Examination of A and B Shares. Pacific-Basin Finance Journal, 16(1-2), 61-77, https://doi.org/10.1016/j.pacfin.2007.04.004 Go to original source...
  30. Walter, A., Weber, M. F. (2006). Herding in the German Mutual Fund Industry. European Financial Management, 12(3), 375-406, https://doi.org/10.1111/j.1354-7798.2006.00325.x Go to original source...
  31. Wermers, R. (1999). Mutual Fund Herding and the Impact on Stock Prices. The Journal of Finance, 54(2), 581-622, https://doi.org/10.1111/0022-1082.00118 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.