Prague Economic Papers 2018, 27(6):637-653 | DOI: 10.18267/j.pep.664
What Do Post-Communist Countries Have in Common When Predicting Financial Distress?
- 1 Bucharest University of Economic Studies, Faculty of Economic Cybernetics, Statistics and Informatics, and INCSMPS (madalina.andreica@csie.ase.ro)
- 2 Bucharest University of Economic Studies, Faculty of Finance, Insurance, Banking and Stock Exchange, and CEFIMO (victor.dragota@fin.ase.ro)
Business failure prediction is an important issue in corporate finance. Different prediction models are proposed by financial theory and are often used in practice. Their application is effortless, selecting only few key inputs with the greatest informative power from the large list of possible indicators. Our paper identifies the financial distress predictors for 5 post-communist countries (Bulgaria, Croatia, the Czech Republic, Hungary and Romania) based on information collected from the Amadeus database for the period 2011-2013 using CHAID decision trees and neural networks. We propose a short list of indicators, which can offer a synthetic perspective on corporate distress risk, adapted for these countries. The best prediction models are substantially different from country to country: in the Czech Republic, Hungary and Romania the flow-approach indicators perform better, while in Bulgaria and Croatia - the stock-approach indicators. The results suggest that the extrapolation of such models from one country to another should be made cautiously. One interesting finding is the presence of the ratios per employee as predictors of financial distress.
Klíčová slova: financial distress, predictors, prediction models, post-communist countries, CHAID decision trees, neural networks
JEL classification: C53, G33, L25
Vloženo: 4. duben 2017; Přijato: 8. prosinec 2017; Zveřejněno online: 12. duben 2018; Zveřejněno: 1. prosinec 2018 Zobrazit citaci
Reference
- Altman, E. I. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. Journal of Finance, 23(4), 589-609, https://doi.org/10.2307/2978933
Přejít k původnímu zdroji...
- Altman, E. I., Iwanicz-Drozdowska, M., Laitine, E. K., Suvas, A. (2014). Distressed Firm and Bankruptcy Prediction in an International Context: A Review and Empirical Analysis of Altman's Z-Score Model. [Retrieved 2016-07-03] Available at: http://doi.org/10.2139/ssrn.2536340
Přejít k původnímu zdroji...
- Anghel, I. (2002). Falimentul (Bankruptcy). Bucharest: Editura Economica. ISBN 973-590-678-3.
- Buus, T. (2015). A General Free Cash Flow Theory of Capital Structure. Journal of Business Economics and Management, 16(3), 675-695, https://doi.org/10.3846/16111699.2013. 770787
Přejít k původnímu zdroji...
- Dragotă, V., Dragotă, M. I. (2009). Models and Indicators for Risk Valuation of Investment Projects. Economic Computation and Economic Cybernetics Studies and Research, 43(3), 69-75.
- Ekinci, A. (2016). Rethinking Credit Risk under the Malinvestment Concept: The Case of Germany, Spain and Italy. European Financial and Accounting Journal, 11(1), 39-64, https://doi.org/10.18267/j.efaj.152
Přejít k původnímu zdroji...
- Geng, R., Bose, I., Chen, X. (2015). Prediction of Financial Distress: An Empirical Study of Listed Chinese Companies Using Data Mining. European Journal of Operational Research, 241(1), 236-247, https://doi.org/10.1016/j.ejor.2014.08.016
Přejít k původnímu zdroji...
- Harris, M., Raviv, A. (1991). The Theory of Capital Structure. Journal of Finance, 46(1), 297-355, https://doi.org/10.1111/j.1540-6261.1991.tb03753.x
Přejít k původnímu zdroji...
- Hsu, J. C. (1996). Multiple Comparisons: Theory and Methods. London, UK: Chapman and Hall. ISBN 978-0412982811.
Přejít k původnímu zdroji...
- Jaba, E., Robu, I. B., Istrate, C., Balan, C. B., Roman, M. (2016). Statistical Assessment of the Value Relevance of Financial Information Reported by Romanian Listed Companies. Romanian Journal of Economic Forecasting, 19(2), 27-42.
- Jain, B. A., Nag, B. N. (1998). A Neural Network Model to Predict Long-Run Operating Performance of New Ventures. Annals of Operations Research, 78, 83-110, https://doi.org/10.1023/A:1018910402737
Přejít k původnímu zdroji...
- Jakubík, P., Teplý, P. (2011). The JT Index as an Indicator of Financial Stability of Corporate Sector. Prague Economic Papers, 20(2), 157-176, https://doi.org/10.18267/j.pep.394
Přejít k původnímu zdroji...
- Keasey, K., Watson, R. (1991). Financial Distress Prediction Models: A Review of Their Usefulness. British Journal of Management, 2(2), 89-102, https://doi.org/10.1111/j.1467-8551.1991.tb00019.x
Přejít k původnímu zdroji...
- Kumar, K., Tan, C. (2004). Artificial Intelligence in Financial Distress Prediction. [Retrieved 2016-09-10] Available at: www.niitcrcs.com/iccs/papers/2005_37.pdf
- Myers, S. (2001). Capital Structure. Journal of Economic Perspectives, 15(2), 81-102, https://doi.org/10.1257/jep.15.2.81
Přejít k původnímu zdroji...
- Ohlson, J. A. (1980). Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of Accounting Research, 18(1), 109-131, https://doi.org/10.2307/2490395
Přejít k původnímu zdroji...
- Olson, D. L., Delen, D., Meng, Y. (2012). Comparative Analysis of Data Mining Methods for Bankruptcy Prediction. Decision Support Systems, 52(2), 464-473, https://doi.org/10.1016/j.dss.2011.10.007
Přejít k původnímu zdroji...
- Reznakova, M., Karas, M. (2015). The Prediction Capabilities of Bankruptcy Models in a Different Environment: An Example of the Altman Model under the Conditions in the Visegrad Group Countries. Ekonomický časopis, 63, 617-633.
- Ross, S. (1977). The Determination of Financial Structure: The Incentive-Signalling Approach. The Bell Journal of Economics, 8(1), 23-40, https://doi.org/10.2307/3003485
Přejít k původnímu zdroji...
- Ross, S., Westerfield, R., Jaffe, J. (2010). Corporate Finance, 9th Edition. Irwin: The McGraw-Hill. ISBN 978-0073382333.
- Šarlija, N., Jeger, M. (2011). Comparing Financial Distress Prediction Models before and during Recession. Croatian Operational Research Review (CRORR), 2, 133-142.
- Scarlat, E., Chiriță, N., Bradea, I. A. (2012). Indicators and Metrics Used in the Enterprise Risk Management (ERM). Economic Computation and Economic Cybernetics Studies and Research Journal, 46(4), 5-18.
- Shumway, T. (2001). Forecasting Bankruptcy More Accurately: A Simple Hazard Model. Journal of Business, 74(1), 101-124, https://doi.org/10.2139/ssrn.171436
Přejít k původnímu zdroji...
- Smith, K., Gupta, J. (2002). Neural Networks in Business: Techniques and Applications. Hershey: Idea Group Publishing. ISBN 1-930708-31-9.
Přejít k původnímu zdroji...
- Tudor, L., Popescu, M. E., Andreica, M. (2015). A Decision Support System to Predict Financial Distress. The Case of Romania. Romanian Journal of Economic Forecasting, 18(4), 170-179.
- Virág, M., Hajdu, O. (1996). Pénzügyi mutatószámokon alapuló csõdmodell-számítások (Financial Ratio Based Bankruptcy Model Calculations). Bankszemle, 15(5), 42-53.
- Virág, M., Kristóf, T. (2005). Neural Networks in Bankruptcy Prediction - A Comparative Study on the Basis of the First Hungarian Bankruptcy Model. Acta Oeconomica, 55(4), 403-425, https://doi.org/10.1556/aoecon.55.2005.4.2
Přejít k původnímu zdroji...
- Welc, J. (2016). Empirical Safety Thresholds for Liquidity and Indebtedness Ratios on the Polish Capital Market. European Financial and Accounting Journal, 11(3), 37-50, https://doi.org/10.18267/j.efaj.161
Přejít k původnímu zdroji...
- Wruck, K. (1990). Financial Distress: Reorganization and Organizational Efficiency. Journal of Financial Economics, 27(2), 419-444, https://doi.org/10.1016/0304-405x(90)90063-6
Přejít k původnímu zdroji...
- Zheng, Q., Yanhui, J. (2007). Financial Distress Prediction on Decision Tree Models. IEEE, 16, 80-120, https://doi.org/10.1109/soli.2007.4383925, http://data.worldbank.org
Přejít k původnímu zdroji...
Tento článek je publikován v režimu tzv. otevřeného přístupu k vědeckým informacím (Open Access), který je distribuován pod licencí Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), která umožňuje nekomerční distribuci, reprodukci a změny, pokud je původní dílo řádně ocitováno. Není povolena distribuce, reprodukce nebo změna, která není v souladu s podmínkami této licence.