Prague Economic Papers 2017, 26(5):542-560 | DOI: 10.18267/j.pep.625

Stochastic Claims Reserving in Insurance Using Random Effects

Michal Gerthofer1, Michal Pešta2
1 Faculty of Informatics and Statistics, Department of Statistics and Probability, University of Economics in Prague, Prague, Czech Republic (Michal.Gerthofer@gmail.com)
2 Faculty of Mathematics and Physics, Department of Probability and Mathematical Statistics, Charles University in Prague, Prague, Czech Republic (Michal.Pesta@mff.cuni.cz)

Estimation of claims reserves, which should be held by the insurer so as to be able to meet expected future claims arising from policies currently in force and policies written in the past, presents an important task for insurance companies to predict their liabilities. A common approach to the reser-ving problem is based on generalized linear models (GLM). In this article, the application of genera-lized linear mixed models (GLMM) - an extension of the GLM - for estimation of the loss reserves is shown. Since the GLMM allows incorporating a random effect instead of several fixed effects corresponding to the accident years as in case of the GLM, volatility of the prediction is reduced. This allows more flexible risk valuation, which is a crucial element of risk management and capital allocation practices of non-life insurers. A real data example together with diagnostics for the model selection are provided as an illustration of the potential benefits of the presented approach.

Klíčová slova: claims reserving, non-life insurance, dependency modelling, random effects, mixed models, GLM, GLMM, panel data
JEL classification: C13, C18, C23, C33, C51, G22

Zveřejněno: 1. říjen 2017  Zobrazit citaci

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Gerthofer, M., & Pešta, M. (2017). Stochastic Claims Reserving in Insurance Using Random Effects. Prague Economic Papers26(5), 542-560. doi: 10.18267/j.pep.625
Stáhnout citaci

Reference

  1. Antonio, K., Beirlant, J. (2007). Actuarial Statistics with Generalized Linear Mixed Models. Insurance: Mathematics and Economics, 40(1), 58-76, https://doi.org/10.1016/j.insmatheco.2006.02.013 Přejít k původnímu zdroji...
  2. Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, H. H., White, J. S. (2009). Generalized Linear Mixed Models: A Practical Guide for Ecology and Evolution. Trends in Ecology and Evolution, 24(3), 127-135, https://doi.org/10.1016/j.tree.2008.10.008 Přejít k původnímu zdroji...
  3. Diggle, P. J., Heagerty, P., Liang, K. Y., Zeger, S. (2002). Analysis of Longitudinal Data. 2nd Edition. New York: Oxford University Press. Přejít k původnímu zdroji...
  4. Dobson, A. J. (2002). An Introduction to Generalized Linear Models. Boca Raton: CRC Press. England, P. D., Verrall, R. J. (2002). Stochastic Claims Reserving in General Insurance. British Actuarial Journal, 8(3), 443-518, https://doi.org/10.1017/s1357321700003809 Přejít k původnímu zdroji...
  5. Fitzmaurice, G. M., Laird, N. M., Ware, J. H. (2004). Applied Longitudinal Analysis. Boston: John Wiley and Sons.
  6. Greene, W. H. (2002). Econometric Analysis. New Jersey: Prentice Hall. Přejít k původnímu zdroji...
  7. Hudecová, Š., Pešta, M. (2013). Modelling Dependencies in Claims Reserving with GEE. Insurance: Mathematics and Economics, 53(3), 786-794, https://doi.org/10.1016/j.insmatheco.2013.09.018 Přejít k původnímu zdroji...
  8. Lehmann, E. L. (1983). Theory of Point Estimation. New York: Wiley. Přejít k původnímu zdroji...
  9. McCulloch, C. E., Searle, S. (2001). Generalized Linear and Mixed Models. Boston: John Wiley and Sons. Přejít k původnímu zdroji...
  10. Meyers, G. G., Shi, P. (2011). Loss Reserving Data Pulled from NAIC Schedule P. [Online; Updated September 01, 2011; Accessed June 10, 2014]. Available at: http://www.casact.org/research/index.cfm?fa=loss_reserves_data
  11. Pešta, M., Okhrin, O. (2014). Conditional Least Squares and Copulae in Claims Reserving for a Single Line of Business. Insurance: Mathematics and Economics, 56(1), 28-37, https://doi.org/10.1016/j.insmatheco.2014.02.007 Přejít k původnímu zdroji...
  12. Rabe-Hesketh, S., Skrondal, A. (2002). Reliable Estimation of Generalized Linear Mixed Models Using Adaptive Quadrature. The Stata Journal, 2(1), 1-21. Available at: http://ageconsearch.umn.edu/bitstream/115947/2/sjart_st0005.pdf Přejít k původnímu zdroji...
  13. Rao, C. R., Toutenburg, H., Fieger, A., Heumann, C., Nittner, T., Scheid, S. (1999). Linear Models: Least Squares and Alternatives. 2nd Edition. Hoboken: Wiley Finance.
  14. Raudenbush, S. (2000). Maximum Likelihood for Generalized Linear Models with Nested Random Effects via High-Order, Multivariate Laplace Approximation. Journal of Computational and Graphical Statistics, 9(1), 141-157, https://doi.org/10.2307/1390617 Přejít k původnímu zdroji...
  15. Wüthrich, M. V, Merz, M. (2008). Stochastic Claims Reserving Methods in Insurance. Hoboken: Wiley Finance.

Tento článek je publikován v režimu tzv. otevřeného přístupu k vědeckým informacím (Open Access), který je distribuován pod licencí Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), která umožňuje nekomerční distribuci, reprodukci a změny, pokud je původní dílo řádně ocitováno. Není povolena distribuce, reprodukce nebo změna, která není v souladu s podmínkami této licence.