Prague Economic Papers 2013, 22(2):251-283 | DOI: 10.18267/j.pep.451

Estimating Correlated Jumps and Stochastic Volatilities

Jiří Witzany
University of Economics, Prague, nám. W. Churchilla 4, CZ - 130 67 Praha 3 (jiri.witzany@vse.cz).

We formulate a bivariate stochastic volatility jump-diffusion model with correlated jumps and volatilities. An MCMC Metropolis-Hastings sampling algorithm is proposed to estimate the model's parameters and latent state variables (jumps and stochastic volatilities) given observed returns. The methodology is successfully tested on several artificially generated bivariate time series and then on the two most important Czech domestic financial market time series of the FX (CZK/EUR) and stock (PX index) returns. Four bivariate models with and without jumps and/or stochastic volatility are compared using the deviance information criterion (DIC) confirming importance of incorporation of jumps and stochastic volatility into the model.

Klíčová slova: value at risk, jump-diffusion, stochastic volatility, MCMC, Monte Carlo
JEL classification: C11, C15, G1

Zveřejněno: 1. leden 2013  Zobrazit citaci

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Witzany, J. (2013). Estimating Correlated Jumps and Stochastic Volatilities. Prague Economic Papers22(2), 251-283. doi: 10.18267/j.pep.451
Stáhnout citaci

Tento článek je publikován v režimu tzv. otevřeného přístupu k vědeckým informacím (Open Access), který je distribuován pod licencí Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), která umožňuje nekomerční distribuci, reprodukci a změny, pokud je původní dílo řádně ocitováno. Není povolena distribuce, reprodukce nebo změna, která není v souladu s podmínkami této licence.