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ESTIMATING CORRELATED JUMPS AND STOCHASTIC 

VOLATILITIES

Jiří Witzany*

Abstract: 

We formulate a bivariate stochastic volatility jump-diffusion model with correlated jumps and 

volatilities. An MCMC Metropolis-Hastings sampling algorithm is proposed to estimate the model’s 

parameters and latent state variables (jumps and stochastic volatilities) given observed returns. 

The methodology is successfully tested on several artifi cially generated bivariate time series and 

then on the two most important Czech domestic fi nancial market time series of the FX (CZK/EUR) 

and stock (PX index) returns. Four bivariate models with and without jumps and/or stochastic 

volatility are compared using the deviance information criterion (DIC) confi rming importance of 

incorporation of jumps and stochastic volatility into the model.
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1. Introduction

A number of empirical studies confi rmed that fi nancial asset returns are not normal 
and exhibit fat tails (leptokurtic distribution). Many models going beyond the standard 
geometrical Brownian diffusion model have been proposed in order to accommodate the 
empirical facts. The most prominent are jump-diffusion models (see e.g. Cont, Tankov, 
2004 for a review), models with stochastic volatility (see Shephard, 2004 for selected 
papers), or models combining both features, i.e. jump-diffusion models with stochastic 
volatility, or even models with jumps in volatility. Modelling of portfolio returns or 
valuation of various multi-asset derivatives requires generalizing of the models into 
multivariate setting.

We are going to consider a bivariate jump-diffusion model with stochastic volatilities 
incorporating possible correlation of jump occurrence, jump size, and of stochastic 
volatilities. The main goal of the paper is to propose an MCMC estimation method that 
will be tested on artifi cial and real world data. We have chosen the two most important 
Czech fi nancial markets time series, namely a series of FX (CZK/EUR) exchange rates 
and of the stock market (PX index) returns. Joint modelling of the two series might be 
important for an asset manager exposed to the Czech stock market and the exchange rates. 
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The joint return modelling is also important for valuation of quanto-style derivatives. In 
both cases, the goal is to model the distribution of future returns of a portfolio exposed 
to both factors.

For example, inspecting the development of the markets in 2004-2011 (Figure 4 - Figure 
6) it seems that the returns of the time series exhibit many jumps and periods of low 
volatility that are followed by periods of high volatility or vice versa. Although the 
sample correlation of returns turns out to be almost zero, the volatilities appear to move 
in the same direction (Figure 6). The questions are: How do the two markets jump and 
how volatile are the stochastic volatilities? Is the non-Gaussian behaviour explained by 
jumps or rather by stochastic volatility? Are the jumps in the two markets correlated in 
terms of occurrence and size? And moreover, are the stochastic volatilities correlated?

Our estimation methodology is based on the MCMC (Markov Chain Monte Carlo) 
approach following Jacquier et al. (2007) and Johannes, Polson (2009). The fi rst break-
through application of the Bayesian methods for the analysis of stochastic volatility 
models has been made in Jacquier et al. (1994). The authors applied an MCMC 
algorithm to estimate parameters as well the latent states of the stochastic volatility 
model on the US stock return data. The estimation method is shown to outperform 
other well-known estimation approaches, such as the Method of Moments or the 
Quasi-Maximum Likelihood Estimator.  Since then extensive research on applications 
of Bayesian methods to stochastic volatility models have appeared (see e.g. Shephard, 
2004). Johannes, Kumar (1999) estimate state dependent jump models (on US stock 
data) in which arrival intensity and jump sizes depend on a given state variable including 
lagged jumps. Eraker et al. (2003) examine stochastic volatility models incorporating 
jumps in returns and volatility using US stock indices returns. Eraker (2004) utilizes in 
addition stock index option date and allows the diffusion and volatility processes being 
correlated. A related Bayesian Kalman fi lter approach has been also applied in Šopov, 
Seidler (2010) in order to study common factors of CZK, HUF, PLN, and SKK yield 
curve dynamics.

The contribution of this paper is in specifi cation and estimation of a bivariate model 
with correlated stochastic volatilities and jumps. Johannes, Polson (2009) consider 
a multivariate version of Merton’s jump-diffusion model where jumps occur at the same 
times for all processes and the jump sizes have a multivariate distribution. Inspecting the 
times of probable jumps from the MCMC estimation of two univariate jump-diffusion 
models applied to the two considered return series, we have note the jump times overlap 
only partially. So, in our specifi cation we have two correlated Poisson processes and 
correlated jump sizes (if the jumps occur at the same time). Regarding the correlation of 
stochastic volatilities, we may again fi rstly inspect the mean stochastic volatilities given 
by the MCMC algorithm applied to the two processes separately. Since the stochastic 
volatility residuals do not indicate any signifi cant correlation but show a strong 
correlation in levels of the stochastic volatilities we propose a bivariate stochastic 
volatility jump-diffusion model with possible Granger causality between the stochastic 
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volatilities as our full model specifi cation (see Asai et al., 2006 or Yu, Meyer, 2006 for 
an overview of multivariate stochastic volatility models). The computationally diffi cult 
estimation of the model is based on our generalization of the method proposed fi rstly in 
Jacquier et al. (1994).

The proposed bivariate jump-diffusion with stochastic volatilities will be fi rstly tested 
on artifi cially generated data. The goal of the test is to demonstrate that the estimation 
procedure yields acceptable results with respect to the generating parameters, in particular 
that it is able to identify existence of jumps, stochastic volatilities, and their correlations.

The methodology will be fi nally applied to estimate and compare four bivariate 
models on the FX and stock returns series, specifi cally: the ordinary diffusion model, 
the jump-diffusion model, the diffusion model with stochastic volatility, and the 
jump-diffusion model with stochastic volatility.  Performance of the models will be 
compared using the deviance information criterion (DIC) generalizing, according to 
Spiegelhalter et al. (2002), the Akaike information criterion (AIC), and applicable to 
models with a large number of latent state variables. Importance of the choice of an 
appropriate model will be illustrated calculating VaR for various time horizons and 
confi dence levels.

2. Methodology

In this section we are going to give a brief overview of the relevant stochastic models. 
We also outline the key elements of the MCMC methods and their implementation 
in case of the stochastic models under consideration.  Finally we shortly describe the 
classical and Bayesian VaR estimation methodology.

2.1  Stochastic Asset Price Models

The most traditional (related to the Black-Scholes formula) continuous-time fi nancial 
model is the geometric Brownian motion described by the stochastic differential 
equation (SDE)

 dS = ȝSdt + σSdz  (1)

where S(t) is an asset price, ȝ its drift, σ its volatility, and dz the Wiener process increment 
(see e.g. Shreve, 2004). The equation can be simplifi ed applying the Ito’s lemma and the 
log transformation  into a generalized Wiener process equation

    2log / 2d dt dzS     . (2)

The left-hand side of (2) can be interpreted as the log return over a time interval of the 
length dt. In practice, a time (Euler) discretization is used in order estimate the parameters 
from an observed fi nancial time series, and in order to generate future returns. In case of 
the equation  the Euler discretization takes the simple form
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 , ~ (0,1)i i ir N     , (3)

where 1log /i i ir S S   is the log return over a regular time interval of length Δt, 2 / 2 t     , and t   . According to (3), observed returns should have 
a normal distribution. However, many studies demonstrate that the returns have, typically, 
a leptokurtic or skewed distribution, in particular fat tails. Consequently, the geometric 
Brownian motion is proposed to be generalized in various directions, in particular, 
allowing for jumps (see Cont, Tankov, 2004) and stochastic volatility (see Shephard, 
2004).

The jump-diffusion SDE can be written in the log-return form as

   2log ( / 2 )Jd dt d JS z d       , (4)

where the jump term, dJ = ZdN , has a normally distributed N(ȝJ ,σJ) jump-size component 
and a component given by the Poisson counting process N with intensity Ȝ. Essentially, 
this component adds a mass to the tails of the returns distribution. We consider a time 
discretization where at most one jump can happen over a single time step:

 ~ (0,1), ~ ( , ~ Ber) n( ).,
i i i i

i i J J iN Z N

r Z J

J

 
  

   
  (5)

According to Eraker et al. (2003) this assumption does not introduce any bias in the 
parameter estimates.

Stochastic volatility models allow the variance V = σ2 or log-variance to evolve according 
to an SDE, i.e. the constant volatility σ in (2) or (4) is replaced by the stochastic volatility 
√V. For example the Heston’s (1993) model sets

 ( ) V VV d V dzd tV      . 

Following Jacquier et al. (1994) and Johannes, Polson (2009) will we rather consider the 
log-variance SDE:

 ( lol gg )o V VV dtd V dz    . (6)

In the discrete setting, with logi ih V , the equation takes the form of an AR(1) model:

1 1) , (0,1)( V V

i i i V i ih h Nh t t          .

Rearranging the terms the equation can be written as

 1
V

i i ih h     , (7)

where t   , 1 t    , and V t   .
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If two or more fi nancial assets is to be modelled, then possible correlations needs to be 
considered. For example S1 if and S2 are two asset prices following (1) with appropriate 
indexes we have to admit possibility of correlated dz1 and dz2. If the prices follow the 
jump-diffusion process (4) then we have to admit a correlation between dJ1 and dJ2. 
Finally, in case of stochastic volatility (6) we might consider a correlation between 1

Vdz

and 2
Vdz , but also a mutual correlation between dz1 and 1

Vdz , and the correlation between 
dz2 and 2

Vdz . Due to the mean-reverting form of (6) we should also consider a possible 
correlation between 1logV and 2logV that could be captured introducing 2logV into 
the SDE for 1logV and vice versa. A nonzero coeffi cient is then interpreted as Granger 
causality form one asset variance to another.

An analyst that needs to model the distribution of future returns of a portfolio, or of 
a derivative payoff depending on two or even more assets, stands in front of a diffi cult 
task: to choose an optimal model and at the same time to estimate in a feasible way its 
parameters using historical or currently observable data. Due to increasing complexity 
of the models we will focus on the MCMC Bayesian estimation and a Bayesian model 
comparison approach.

2.2  Markov Chain Monte Carlo (MCMC)

The Bayesian MCMC sampling algorithm has become a strong and frequently used tool 
to estimate complex models with multidimensional parameter vectors, including latent 
state variables. Examples are fi nancial stochastic models with jumps, stochastic volatility 
processes, models with complex correlation structure, or switching-regime processes. 
For a more complete treatment of MCMC methods and applications we refer reader for 
example to Johannes, Polson (2009), Rachev et al. (2008), or Lynch (2007).

MCMC provides a method of sampling from multivariate densities that are not easy to 
sample from directly, by breaking these densities down into more manageable univariate 
or lower dimensional multivariate densities. To estimate a vector of unknown parameters  1,..., k   from a given dataset, where we are able to write down the Bayesian  
marginal densities  da a| t, ,ijp i j    but not the multivariate density  | datap  , the 
MCMC Gibbs sampler works according to the following generic procedure:

0. Assign a vector of initial values to  
1

0 0 0,...,
k

    and set j = 0.

1. Set  j = j + 1.

2. Sample 1 1
1 1 2 ,...,( )data| ,k

j j jp     .

3. Sample 1 1
2 2 1 3 ,..., da( | , , )taj j j j

kp      .
...

k+1. Sample 1 2 1,...( | , , ), dataj j

k k

j

k

jp       and return to step 1.
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According to the Clifford-Hammersley theorem the conditional distributions da a| t, ,ijp i j    fully characterize the joint distribution  and moreover under mild 
conditions the Gibbs sampler distribution converges to the target joint distribution 
(Johannes, Polson, 2009).

The conditional probabilities are typically obtained applying the Bayes theorem to the 
likelihood function and a prior density, e.g.

      1 1 1 1 1 1
1 2 1 2 1 2,..., data data | ,..., ·prior ,...| , ,, |j j j j j

k k k

jp L               . (8)

We will often use uninformative priors, i.e.  prior 1i   and assume that the parameters 
are independent. In order to apply the Gibbs sampler the right hand side of the proportional 
relationship needs to be normalized, i.e. we need to be able to integrate the right hand 
side with respect to θ1 conditional on 1 1

2 ,..., j

k

j   .

Useful Gibbs sampling distributions are univariate or multivariate normal, Inverse 
Gamma1 or Wishart, and the Beta distribution. If 1,..., Ty yy  is an observed series 
and assuming that iid  2,iy N   with unknown parameters ȝ and σ then

2
2

2
1

2

2

)1
| , ) ( | , ) (

(
( ; exp

2

) ( , )
22

exp ; ,
2

TT
i

i

i

i i

L pp

T y

y
y

y

T T

        
   


      

     

   
      












y y

  (9)

using the uninformative prior )( 1p   . Moreover 

 
 
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 
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 
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(10)

using the prior 2 2( ) 1/p   equivalent to the uninformative log-variance prior 
2(log ) 1p   . Hence the Bayesian distributions for ȝ and σ can be obtained by the 

Gibbs sampler iterating (9) and (10). The prior distributions are often specifi ed in order 
to improve convergence but not to infl uence (signifi cantly) the fi nal results, typically 
a wide normal distribution conjugate prior distribution for ȝ and a fl at inverse gamma 
distribution for σ2 are used.

1 Inverse gamma probability distribution density function with the shape parameter α and scale 

parameter ȕ is given by   1; exp(, / )
( )

IG x x x

   
    where is the Gamma function. The mean 

of x is 
1

    for and the variance is 
2

2

21)( ( 2)

      for α > 2. Alternatively, given ȝ and σ2 

we get 
2

2
2

    and 
2

2
1

       .

DOI: 10.18267/j.pep.451



PRAGUE ECONOMIC PAPERS, 2, 2013        257

If the series is multivariate normal then the distributions are generalized to multivariate 
normal and inverse Wishart (Lynch, 2007). A multivariate discrete-time diffusion process  
is in fact equivalent to a multivariate normal return series model with iid ri ~ N (μ, ∑), 
where ,1 ,( ,..., ) 'i i i mr rr  is a vector of returns on m assets observed at time i, μ is a vector 
of means, and ∑ a covariance matrix. The marginal distributions are

  
1

,
1 1

| , ;
T

i

iT T
p 


     r r     (11) 

and                        ( 1)/2 11
| , ; , | | ex Sp

2
trT mSp IW T            r   

(12)

Where IW ( ∑; T, S ) denotes the inverse Wishart distribution, 
1

( ) '( )
T

i i

i

S


   r r   is 

the scale matrix, and the improper prior 
1

2|( ) |
m

p
   analogous to the univariate case 

has been used.

If 1,..., Tb bb  is a binary series where bi ~ Bern(Ȝ) iid, then Ȝ can be sampled using 
the beta2 distribution:

 1

1

( (1| ) ( | )· ( ) ) ) Beta( ;(1 1, 1)i i

T
b b n T n

i

L p n T np         


      b b
    

(13)

with the uninformative prior )( 1p   . Generally, the beta distribution Beta (x; α, ȕ) 
would be a conjugate prior where α and ȕ can be interpreted as prior “successes” and 
“failures.”

If the integration on the right hand side of (8) is not analytically possible (which will 
be also our case) then the Metropolis-Hastings algorithm can be used. It is based on 
a rejection sampling algorithm. For example in step 2 the idea is fi rstly to sample a new 
proposal value of 1

j and then accept it or reject it (i.e. reset 1
1 1:j j   ) with appropriate 

probability so that, intuitively speaking, we rather move to the parameter estimates with 
higher corresponding likelihood values.

Specifi cally, step 1 is replaced with a two step procedure:

1. A.   Draw 1
j  from a proposal density 1

1 1 1
1 2 ,...( ,| , )d t, a aj j

k

jq       ,

B.  Accept 1
j with the probability α = min (R, 1), where

 
      

1 1 1 1 1
1 2 1 2

1 1 1 1 1 1
1 2 1

1

1 2

,..., data ,.| , | , ,

| , | , ,

.., data

,..., data ,..., data

j j j j j j j

j j j j j j

k k

k k

j

p q
R

p q

      
      

    
      . (14)

In practice the step 1B is implemented by sampling a u ~ U (0,1) from the uniform 
distribution 1

j  and accepting if and only if  u < R.

2 The pdf of the beta distribution is 1 1( )
Beta( ; , )

( ) ( )
(1 )x x x

     
  

    for 0 < x < 1. The mean can 

be expressed as 
     and the variance 2

2) ( 1( )

        .
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It is again shown (see Johannes, Polson, 2009) that under certain mild conditions the 
limiting distribution is the joint distribution  | datap  of the parameter vector. Note 
that the limiting distribution does not depend on the proposal density, or on the starting 
parameter values. The proposal density and the initial estimates only make the algorithm 
more-or-less numerically effi cient.

A popular proposal density is the random walk, i.e. sampling by

 1
1 1 (0, )j j N c    .  (15)

The algorithm is then called Random Walk Metropolis-Hastings. The proposal density 
is in this case symmetric, i.e. the probability of going from 1

1
j  to 1

j is the same as the 
probability of going from 1

j to 1
1
j  (fi xing the other parameters), and so the second part 

of the fraction in the formula (14) for α in step 1B cancels out. Consequently, assuming 
non-informative prior, the acceptance or rejection is driven just by the likelihood ratio

  
1 1

1 2

1 1 1
1 2

data | ,...,

data | .., ,

,

.,

k

j j j

j j j

k

L
R

L

  
  

 
   .

Another popular approach we shall use is the Independence Sampling Metropolis-

Hastings algorithm where the proposal density  1q j does not depend on 1
1
j  (given 

the other parameters). The acceptance probability ratio (14) is slightly simplifi ed but 
the proposal densities do not cancel out. In order to achieve effi ciency the shape of the 
proposal density q should be close to the shape of the target density p, which is known 
only up to a normalizing constant.

Typically, estimating complex stochastic models, we need to estimate the parame- 
ter vector with a few model parameters Θ, and a vector with a large number of 
state variables X (proportional to the number of observations). We know that 

, | data) (data | , )( · ( , )X p Xp p X    and so we may estimate iteratively the 
parameters and the state variables:

| ,data) (data | , )· ( | )· ( ),

| ,data) (data | , )· ( | )·

(

( ( ).

p

p

X p X p X p

X p X p X p X

    
   

The parameters and state variables are sampled step by step, or in blocks, often combining 
Gibbs and Metropolis-Hastings sampling.

2.3 Univariate Jump-diffusion Stochastic Volatility Model

The main goal of this section is to propose an MCMC estimation algorithm for a bivariate 
jump diffusion stochastic volatility model. However, it will be useful to outline fi rstly 
the univariate jump-diffusion model and the extended model with stochastic volatility. 
It is then easier to defi ne the sampling steps of the bivariate model estimation algorithm. 
Moreover,  given two fi nancial series, it is useful to estimate fi rstly the univariate 
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models separately on the two series. Since the latent variables, i.e. jumps and stochastic 
volatilities, are also estimated, the output can be used to make a preliminary analysis of 
correlations between the jumps and stochastic volatilities.

Let us fi rstly consider the discrete-time jump diffusion model  with constant volatility. 
Given a sequence of observed returns, the parameters and latent state variables to be 
estimated are: ȝ, σ, Ȝ, ȝj , σj , Z, J. 

In this case we may use the pure Gibbs MCMC algorithm:

1. Sample reasonable initial values (0) (0) (0) (0) (0) (0) (0) ,, , ,, ,J J     Z J .

2. For i = 1 ..., T sample ( ) ( 1) ( 1) ( 1)( ; , ) if ,  0
J J

g g g g

i iZ JZ       and

( ) ( 1) ( 1) ( 1) ( 1) ( 1)( , ) ( ; , ) ; 1if 
J J

g g g g g g

i i ir Z Z JZ             .

3. For i = 1 ..., T sample ( )
1 0 1{0,1}, Pr[ 1] )/ (g

iJ J p p p    , where

( 1) ( 1) ( 1)
0

( 1) ( 1) ( 1)
1

    ( , ) (1-

( , )

= ; ),

;

g g g

i

g g g

ip

p r

r Z

   
   

  
   

4. Sample ( ) ( ),g g  based on the normally distributed time series ( ) ( )g g

i i ir Z J  accord-
ing to (9) and (10).

5. Sample Ȝ(0) based on Bernoulli distributed Ji
(g)binary time series according to (13).

6. Sample ( ) ( ),
J J

g g   based on the normally distributed time series ( )g

iZ  according to 
(9) and (10).

Secondly, let us consider a jump-diffusion model with stochastic volatility following the 
equation (6). The discrete time specifi cation is:

 1log

, ),

log

~ (0,1), ~ ( , ~ Bern( ),iid

i i i i i

V

i i i

V

i i i J J i

V

N Z N

r V Z J

V

J


  

  


  






 
 (16) 

In this case we need to estimate not only the latent state variables Z, J but also the 
vector of latent stochastic variances V. The MCMC estimation unfortunately requires 
application of the Metropolis-Hastings since the conditional distribution for the variance 
Vi  (conditional on the other variances and parameters) is not a known one. It follows from 
(16) and the Bayes Theorem that:

            ( ) 1 1, , , ) ( , ) ( ) (( | , | , , , | , )|i i i i i i i i i ip r Z p V pp V V J V VV      r Z JV . (17)

Here the fi rst part of the right hand side of (17) is inverse gamma in Vi:

       0.5 2| , ,( , ) ; , exp 0.5( ) /i i i i i i i i i i i i ip r ZV J Z J V rr Z VV J       . (18)
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But the remaining two factors are lognormal3 in Vi :

1;log (log log ),i i iV V V   , i.e. 1 2 2
1 1| , exp (log( ) log ) / (2 )i i i i iV Vp VV V       ,

and similarly

1 1; lolog (log ,g )i i iV VV       , i.e. 2 2
1 1| , exp (log ) / (( ) log 2 )i i i iV Vp V V       in terms of Vi.

It is easy to verify that the product of the two lognormal distributions is proportional to 
the lognormal distribution with the corresponding normal distribution mean and standard 
deviation:

 

   2
1 1

2

lo(1 ) (log ) /

/

g 1 ,

1 .

i i iV V   
  

 


  



 (19)

In order to obtain a proposal distribution Jacquier et al (1994) suggest replacing the 
lognormal distribution with an inverse gamma distribution fi tting the fi rst two moments. 
It is confi rmed empirically that the choice of a proposal distribution with a shape closely 
mimicking the original distribution is of key importance, since high dimensionality of 
the variance state variable vector makes convergence of the MCMC algorithm diffi cult.

The product of two inverse gamma distribution density functions is an inverse gamma 
distribution density function, hence combining the inverse gamma distribution (18) and 
the fi tted inverse gamma distribution we fi nally obtain the proposal density function:

  2 2
( )

2

2

( | , ; ,( exp( 0.5 ) 0.5( ) ,

1 2exp(
.

1 ex

, , , ) 0,5 1)  

)
where 

p( )

i i i i i i iq IG ZV r JV     
 

   



    


r Z JV

 (20)

The proposal density is used in the Metropolis/Hasting algorithm within a new block, 
e.g. following the step 3 in the MCMC procedure for the jump-diffusion processes. This 
block updates all the variances Vi , i = 1, ..., T. For V1 and VT the formula (19) needs to be 
modifi ed slightly since V0 and VT are not known. The diffusion volatility σ is obviously 
replaced by the square root of the latest estimate of the variance Vi and we also need to 
add a new MCMC step for the AR(1) coeffi cients α, ȕ and Ȗ (for example following 
the step that updates V). The coeffi cients α, ȕ can be sampled with a bivariate normal 
distribution, and Ȗ with the inverse gamma distribution. The extended MCMC algorithm 
is in detail described as follows:

3 Lognormal probability density fi ction with parameters ȝ and σ is given by 

 2 21
, ) exp 0.5(l /o; )

2
( g xL

x
N x        . It is useful to note that the mean of x is 

2exp( / 2)   and the variance is 2 2) 1) exp(2(ex )p(    .

DOI: 10.18267/j.pep.451



PRAGUE ECONOMIC PAPERS, 2, 2013        261

1. Sample reasonable initial values (0) (0) (0) (0) (0) (0) (0) (0) (0) (0), , , , , , , , ,J J       V Z J

2. For i = 1, ..., T sample ( ) ( 1) ( 1) ( 1)( ; , ) if ,  0
J J

g g g g

i iZ JZ       and

       ( ) ( 1) ( 1) ( 1) ( 1) ( 1)( , ) ( ; f; , ) 1 i  
J J

g g g g g g

i i i ir Z V ZZ J          .

3. For i = 1, ..., T sample ( )
1 0 1{0,1}, Pr[ 1] )/ (g

iJ J p p p    , where

 

( 1) ( 1) ( 1)
0

( 1) ( 1) ( 1)
1

= ; )( , ) (1-

( , )

,

;

g g g

i i

g g g

i i

p r V

r Z Vp

  
  

  

     (21)

4. Sample new stochastic variances Vi
(g) for i = 1, ..., T using Metrolis-Hastings (14) 

with the proposal density given by (20)

5. Sample new stochastic volatility autoregression coeffi cients α(g), ȕ(g), Ȗ(g) from 
hi = log Vi

(g) for i = 1, ..., T using the Bayesian linear regression model (Lynch, 2007):

 

 

   

1

1 1

( ) 2

( ) ) ( 2 1

2

( )

ˆ ˆˆ( )  ,where 

ˆ ˆ'
( )

ˆ( , ) '; ,( ) ( ) .

1....1
, , ... ,

...

2
, ,

2 2

,

T

T

g

g g g

h h
h h

n
IG

     






     



  







X'X e = y - X

e e

X'

Xy y

X

X  


 (22)

6. Sample ȝ(g)  based on the normally distributed time series ri – Zi 
(g) Ji 

(g) with vari-
ances Vi

(g), i.e.

  ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
1 1 1

1 1
;| , ,, , 1

g gT T T
g g g g i i i

g g g
i i ii i i

J Z
p

V V V

r 
  

      r Z J V .

7. Sample Ȝ(0) based on Bernoulli distributed Ji 
(g) binary time series according to (13).

8. Sample ȝj
(g), σj

(g)  based on the normally distributed time series Zi 
(g)  according to (9) 

and (10).

2.4  Bivariate Jump-diffusion Stochastic Volatility Model

Our ultimate goal is to study relationship between returns, jumps, and volatilities of two 
related fi nancial series. First, we may estimate independently the parameters and latent 
variables J1, Z1, V1 and J2 , Z2 , V2 of (16) for two given series of returns r1 and r2 . Since we 
also get estimates of the latent variables, i.e. jump times, jump sizes, and variances, we 
may inspect their relationship. For example we may analyze the overlap of probable jump 
times of the two processes, i.e. of the sets 1, 1] 0.[ 5{ | }ii P J   and 2, 1] 0.[ 5{ | }ii P J   . 
Similarly the relationship between mean volatilities can be analyzed. Since 1, 1,logi ih V
is specifi ed as a normal variable by the model, the mean volatility should be expressed by 

1, 1,exp( / 2)i ih  where 1,ih  is an MCMC estimation of the mean of V1,i. The correlation 
between the series 1, ; 1,...,i i T  and 

2, ; 1,...,i i T  (residuals or levels) indicates 
what the correlation between the stochastic volatilities might be.
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However, to give a consistent answer we need to specify a full bivariate stochastic 
volatility jump diffusion model:

 

1, 1 1, 1, 1, 1,

1, 1 11 1, 1 12 2, 1 1 1,

2, 2 2, 2, 2, 2,

2, 2 21 1, 1 22 2, 1 2 2,

1, 1,

2, 2,

log lolog g

log log

11
~ 0, , ~ 0,

1

log

i i i i i

V

i i i i

i i i i i

V

i i i i

V
i Vi

V
i Vi

V V

V V

N

r V Z J

V

r V Z J

V

N


   


   




 

 







             

 
  

 
 

    













 
 

 
1, 1 1 1 2

2, 2 1 2 2

1, 1 2, 1, 2,

2

2

2

1

~ ,

~ Bern( ), ~ Bern( ),  co ,rr

i J J Z J J

i J Z J J J

i i i i J

Z

Z

J J J J

N
    
    

  

      
                   



 (23)

The model does not take into account a possible correlation between the diffusion and 
log-variance residuals, but it incorporates possible Granger causality between the two 
log-variance processes. For example ȕ12 > 0 if  then high level of log V2(Granger) causes 
log V1 to become larger. Our preliminary analysis of the data we intend to study indeed 
indicates that the volatility residuals 1,

V

i  and 2,
V

i are not correlated, but log V1i and logV2i  

are correlated. We also compare the results of the stochastic volatility jump-diffusion 
model against the restricted bivariate jump-diffusion model with constant volatilities, 
inspecting in particular the jump probabilities and the jump correlations estimated with 
and without stochastic volatilities.

Correlated jumps

In order to incorporate correlated jumps and jump sizes into the MCMC algorithm given 
in Section 2.3 we need to modify the steps 2 and 3 given as follows:

Sample the new jump sizes (omitting the upper indices g and g –1)

     
   1

| , , | , ,

' (

|

exp 0.5 ) ' )

exp 0.5( (

(

) ' )

i i i i i i i

i i i i Z J i Z

i i i i i

p Z r J p r Z J p Z

Z Z

m V m

y y

Z Z

 


  
    
  




where

1, 1, 1,1

2, 2, 2,2

0
, , , , ,

0
i i i

i i i i i i i

i i i

r Z J
r Z J y r Z

r Z J
J

 
                       

 
1, 1, 2, 1 1 2

1 2 21, 2, 2,

2

2
,

i i i J Z J J

i J

Z J J Ji i i

V V V

V V V

    
   

           (24), and
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   11 1 1 1, ( ) .i i i i J i i i i i i JV J J m V J r          
Next, we need to resample the correlated jump times. Since by defi nition  

11 1 2

1 2 1 2)(( 1 )1
J

p       
  where 11 1, 2,Pr[ 1& 1]i ip J J    we have

1 1 2
1, 2, 1

2

(1
Pr

)(1 )
[ 1| 1]i i JJ J

    
      and

1 2 1
1, 2 1

2

,

)

1

(1
Pr[ 1| 0]i i JJ J

    
    .

Similarly to (21) (again omitting the upper indices g and g – 1) we set

0 1 2 2, 2, 1, 2,

1 1, 2 2, 2, 1, 21 ,

    ,  Pr[

 ,  

= ; , 0 | ],

= ; , 1| ]r[ ,P

i i i i i i

i i i i i i i

p r J

p

Z J J

r JZ Z J J

  
  


  

 

 

   
  

and sample 1, 1, 1 0 1{0,1}, Pr[ )/ (1]i iJ J p p p    .

Finally, we need to add two additional steps re-sampling the correlations ρJ  and ρJ . The 
jump size correlation can be in fact sampled in one step with jump size volatilities ∑J using 
the inverse Wishart distribution (12) as the series Zi is assumed to be bivariate normal. 
Regarding ρJ we use the random walk Metropolis-Hastings step and the relationship

1 2 1 2 1 2 1 2 1, 2,
1

, , , ) , , , ) (( | ( | , )
T

J J i i

i

L p Jp J     


 JJ JJ , where 

1 2 1 2 1 2 1

2 1

(1,1) (1,1),

(0,1

(1 )

) (1,1), (0,0) 1 (0,1)

(1 ), (1,0)

.
Jp p

p p p

p

p

       
 

  
    

  

Regarding the diffusion residuals correlation coeffi cient ρ it can be easily re-sampled 
using the random walk Metropolis-Hastings:

   
1

2 , ; ,| i

T

i

ip r 


  2 21 1 1 1 2
r ,J ,Z ,V r ,J ,Z ,V,

with the bivariate normal density function and the notation (24) .

Correlated stochastic volatilities

Correlation between stochastic volatilities can be captured by correlated residuals and by 
correlated levels of the log volatilities expressed in the VAR(1) model (23).

In order to simplify the notation set , ,logk i k ih V , (k = 1,2; i = 1, ..., T) . Re-sampling 
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the variance V1,i conditional on the other latent variables and parameters MCMC needs 
to take into account its relationship to 1, 2,,i i ir r r  and to V1,i–1 , V2,i–1 given by the VAR 
equation for h1,i , but also to V1,i+1 and V2,i+1 given by the equations for h1,i+1 and h2,i+2. 
Applying the Bayes theorem:

 
1, 1,( ) 1 1 1

1, 1, 1 2, 1 1, 1 1, 2, 2, 1 1,

2 2

2,

2 2, , , , , )( | , , ,

| , , | , , |( , ) ( ) ( ) ( )., , | , ,

i i

i i i i i i i i i i i i ip r Z p V p V p V

p V

V J V V V V V V


   


    

r Z J r Z JV V
   (25)

In order to set up a manageable proposal density let us assume that r1,i , r2,i  are uncorrelated 
and take into account only the likelihood of the return r1,i given the other parameters. True 
proportional density used the Metropolis- Hastings step will be still given by (25). After 
this modifi cation, the fi rst probability distribution on the right hand side is again inverse 
gamma in V1,i, while the remaining densities are lognormal. The product of the three 
lognormal densities is lognormal with the corresponding normal distribution mean and 
variance:

2 2 2
2 1 11 1, 1 12 2, 1 2 11 1, 1 1 12 2, 1 21 2 2, 1 22 2,

2 2 2 2
2 11 1 21

2 2
2 1 2

2 2 2 2
2 11 1 21

( ) ( ) ( )
,

(1

.
(1

)

)

i i i i i i

i

h h h h h h               
     

        

 

  


    
  (26)

The Metropolis-Hastings proposal density for updated V1,i  is then given by (20). The 
second process varianceis V2,i  resampled analogously.

Finally, given V1 and V2 (omitting the upper index g) we need to update the coeffi cients 
α1,  ȕ11,  ȕ12,  Ȗ1,  and α2,  ȕ21,  ȕ22,  Ȗ2. We shall use the Bayesian linear regression model as 
in the univariate case:

 

    
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1,1 1, 1 1,

2,1 2, 1
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2 1
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       

 




    

 

   
    

Xy XX'X e = y - X

e

y

e

X'X

  


Similarly we proceed for α2,  ȕ21,  ȕ22,  Ȗ2.

2.5 Model Comparison and Value at Risk Estimations

In order to compare the different models we will use the deviance information criterion 
(DIC) of Spielgelhalter et al. (2002). It is shown to generalize the Akaike information 
criterion (AIC) that is not appropriate to compare stochastic volatility or jump-diffusion 
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models (Yu, Meyer, 2006). In order to calculate AIC one needs to specify the number 
of free parameters. In case of the stochastic volatility and jump-diffusion models the 
number of additional latent variables estimated has an order of T. On the other hand, 
since the variables are not independent, it is not clear what should be the number of free 
variables.  Likewise AIC, DIC has two components, a term that measures goodness-of-fi t 
and a penalty term for increasing model complexity:

DDIC D p  .

The fi rst term is defi ned as the posterior mean of the deviance ) 2log (da a( t | )D L    , i.e.

|data[ ( )]DD E 
Here Θ includes all the model parameters and estimated state variables. Since the 
likelihood function (data | )L  is known the measure is estimated just averaging the 
likelihood over MCMC sampled estimates of ( )g .

The second term measuring the effective number of parameters is defi ned as the 
difference between the posterior mean of the deviance and the deviance evaluated at the 
estimated parameters ̂ , i.e.  ˆ

Dp D D   .

The parameters are, in our case, estimated as means of the sampled values discarding 
an initial period of the MCMC sampling. The stochastic volatilities are estimated as 

, ,exp / 2)ˆ (k i k ih  where ,k ih is the mean of sampled values. In case of jump occurrence 
we set ,

ˆ 1k iJ  if and only if the mean of sampled jump indicators is larger than 0.5, i.e. if 
the probability of jump occurrence is estimated to be larger than 50%. The jump size is 
again estimated as the sample mean of sampled jumps.

Other classical Bayesian goodness-of-fi t measures to be mentioned are the Bayes 
factors or marginal likelihood. We follow Yu and Meyer (2006) who recommend the 
DIC measure shown to have a consistent performance with respect to the two standard 
measures, and is relatively easy to compute.

Value at Risk (VaR)

Finally, we intend to illustrate the difference between the estimated bivariate models 
calculating VaR for different time horizons and confi dence levels. If the true data were 
generated by a simple process, e.g. the pure diffusion one, then the estimations yielded 
by more general models (including jumps and/or stochastic volatilities) but calibrated 
on the same dataset should be similar. However, if the data contain “true” jumps and/or 
stochastic volatility, then the VaR estimations will probably signifi cantly differ, and the 
choice of model becomes important.

Formally, Value at Risk, VaR(N,1 – α)is defi ned as – qα[X] where qα[X] denotes the α - 
quantile of the random variable X modelling the portfolio market profi t/loss, N (business) 
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days to the future. The variable X can be also defi ned as the portfolio return relative to 
the initial investment.

We will consider a simple foreign stock investment where the domestic currency value of 
the portfolio is VDC = S.VFC, is the exchange rate measuring foreign currency FC in terms 
of domestic currency DC, and VFC is the foreign currency stock value. The domestic 
currency log-return over a time horizon can be expressed as the sum rDC = rS + rFC of the 
exchange rate log-return and the foreign currency stock log-return. Thus, in order to get 
the distribution and quantiles of rDC  we need to model the joint distribution of rS and rFC.

The simplest and widely used (parametric normal VaR) method calculates the variances 
and the covariance of rS and rFC, combines them to get the standard deviation of 
rDC = rS + rFC, and multiplies it with a standard normal distribution 1 – α quantile to get 
an estimate of VaR(1,1 – α). To get N day estimate, the value is scaled by √N. We will 
use the estimation with an EWMA (exponentially moving weighted average) covariance 
matrix as a benchmark value.

Given a specifi c stochastic model and its parameters we may simulate the returns 

rT+1, ...,  rT+1 one to N days ahead, and so the compounded N-days log-return 
1

T i

N

i

r r 
 .

Note that in case of the stochastic volatility model (16) the initial values must also 
include an estimate of the last variance VT. The bivariate model jump-diffusion model 
with stochastic volatility model (23) allows us to simulate the joint distribution of rS

 and 
rFC

  over N days horizon.

The Bayesian estimations in fact yields an empirical distribution of the parameters 
approximated by a sequence of MCMC simulated values Θ1, ..., ΘK (discarding an initial 
sampling period). The Value at Risk estimated as above is then conditional on the estimate ̂ , i.e. in fact we get   ˆVaR ,1 |N   . Since the parameters are uncertain and modifi ed 
parameters might infl uence signifi cantly the VaR measure we should rather calculate 
a VaR estimate incorporating the parameter uncertainty. This can be easily done in the 
Bayesian framework sampling fi rstly Θi from Θ1, ..., ΘK and then simulating the returns 
given the parameter vector Θi . The distribution of simulated returns can be used to obtain 
the Bayesian Value at Risk denoted as   VaR ,1 | dataN  , i.e. VaR conditional on the 
data used to estimate the parameters rather than on a specifi c vector of point estimates.

3. Empirical Study

The main goal of this section is to apply the bivariate jump-diffusion model stochastic 
volatility model, its submodels (bivariate diffusion, jump-diffusion, and stochastic 
volatility), and the proposed estimation method to the FX and stock market time series 
returns. However, before doing so we are going to test the estimation procedures on 
artifi cially generated data in order to demonstrate that the model is able to identify 
or reject jumps and stochastic volatility parameters. The MCMC algorithm and all 
calculations have been implemented in Matlab.
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3.1  An Empirical Test

We are going to sample T = 2000 returns according to the bivariate jump-diffusion 
stochastic volatility model  with several sets of the model parameters (and starting with 
initial log-variances logV1,0 = logV2,0 – 7). The proposed MCMC estimation method is then 
applied to the generated data and estimated parameters are compared with the original 
parameters that were used to generate the data. The “true” parameters are expected to lie 
with the Bayesian confi dence intervals.

The upper part of  Table 1 shows parameters of the fi rst artifi cially generated bivariate 
process. There are no jumps, there is no correlation between the diffusion residuals, and 
no correlation between the variances. The lower part of the table shows the MCMC 
estimates with standard deviations in parenthesis. The MCMC procedure has been run 
3000 times and the fi rst 1000 estimations have been discarded. Figure 1 shows, for 
example, relatively fast convergence of the fi rst stochastic volatility equation coeffi cients 
ȕ11 and ȕ12.

Table 1. 

Generated Bivariate Stochastic Volatility Process (upper table) and the MCMC Estimated 
Parameters

Generated jump-diffusion process 1 with stochastic volatility

ȝ1 Ȝ1 ȝ1,J σ1,J α1 ȕ11 ȕ12 Ȗ1

0.001 0 - - -0.14 0.98 0 0.13

Generated jump-diffusion process 2 with stochastic volatility

ȝ2 Ȝ2 ȝ2,J σ2,J α2 ȕ21 ȕ22 Ȗ2

0.003 0 - - -0.28 0 0.96 0.16

Correlations

ρ ρJ ρZ

- - -

Estimated jump-diffusion process 1 with stochastic volatility

ȝ1 Ȝ1 ȝ1,J σ1,J α1 ȕ11 ȕ12 Ȗ1

0.0022 

(4.477e-004)

0.0026 

(0.0050)

-0.0041 

(0.0421)

0.0893 

(0.0108)

-0.1337 

(0.0595)

0.9794 

(0.0069)

0.0020 

(0.0066)

0.1233 

(0.0161)

Estimated jump-diffusion process 2 with stochastic volatility

ȝ2 Ȝ2 ȝ2,J σ2,J α2 ȕ21 ȕ22 Ȗ2

0.0023 

(4.606e-004)

0.0045 

(0.0025)

0.0304 

(0.0224)

0.1021 

(0.0242)

-0.1825 

(0.0603)

0.0011 

(0.0059)

0.9730 

(0.0074)

0.1332 

(0.0138)

Estimated correlations

ρ ρJ ρZ

-0.0056 (0.0243) 0.4275 (0.1920) 0.0764 (0.5542)
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The estimated stochastic volatility parameters are consistent with the “true” parameters, 
indeed the estimated coeffi cients ȕ12 and ȕ21 are not signifi cantly different from zero and so 
Granger causality would not be detected. The estimated means ȝ1 and ȝ2 seem to differ from 
the “true” values signifi cantly, but we have to take into account the error caused by the data 
generation process itself possibly correlated to a relatively large volatility. The mean of the 
fi rst generated return series turns out to be 0.0023 and of the second 0.0019 in line with the 
estimations. The zero jump intensities fall within the 95% confi dence intervals around the 
estimated values. In fact no jumps with probability larger than 0.5% are identifi ed by the 
sampled jump probabilities (averaging the jump indicator Jk,i) – see Figure 2.

Figure 1

Convergence of the Coeffi cients β11 and β12 

Figure 2

Sampled Jump Probabilities
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Table 2 shows the generating and estimated parameters of a process with nonzero jump 
intensities, with a positive jump occurrence correlation, but still with zero variance 
correlation. The estimates are again more-or-less consistent with the “true” parameters. 
Figure 3 tries to compare the simulated jumps and their absolute sizes with the estimated 
jump probabilities. The point is that if a simulated jump size is too small, then the jump 
can be ex post hardly identifi ed and the estimated jump probability is low. This may 
explain the difference between the true jump probability Ȝ1 = 0.0013 and the estimated 
value 0.0037 (0.0127). The precision of the jump intensity estimates should improve 
with a larger number of observations.

Table 2

Generated Bivariate Jump-diffusion Stochastic Volatility Process (upper table) and the MCMC 
Estimated Parameters

Generated jump-diffusion process 1 with stochastic volatility

ȝ1 Ȝ1 ȝ1,J σ1,J α1 ȕ11 ȕ12 Ȗ1

0.003 0.0130 0.03 0.15 -0.14 0.98 0 0.13

Generated jump-diffusion process 2 with stochastic volatility

ȝ2 Ȝ2 ȝ2,J σ2,J α2 ȕ21 ȕ22 Ȗ2

0.001 0.0205 -0.02 0.17 -0.21 0 0.97 0.16

Correlations

ρ ρJ ρZ

0 0.2326 0

Estimated jump-diffusion process 1 with stochastic volatility

ȝ1 Ȝ1 ȝ1,J σ1,J α1 ȕ11 ȕ12 Ȗ1

0.0026 (4.876e-

004)

0.0037 

(0.0127)

0.0344 

(0.0392)

0.1737 

(0.0168)

-0.0941 

(0.0505)

0.9836 

(0.0053)

0.0029 

(0.0053)

0.1206 

(0.0161)

Estimated jump-diffusion process 2 with stochastic volatility

ȝ2 Ȝ2 ȝ2,J σ2,J α2 ȕ21 ȕ22 Ȗ2

4.7705e-004 

(4.574e-004)

  0.0290 

(0.0052)

-0.0361 

(0.0223)

0.1463 

(0.0144)

-0.3125 

(0.0859)

-0.0022 

(0.0080)

0.9588 

(0.0101)

0.1794 

(0.0197)

Estimated correlations

ρ ρJ ρZ

-5.1738e-004 (0.0243) 0.4026 (0.1037) 0.0249 (0.2574)
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Figure 3

Bars below the x-axis Show the Simulated Jumps and Their Absolute Size, Bars above the 
x-axis Show the MCMC Estimated Jump Probabilities (left – process 1, right – process 2)

Finally Table 3 shows parameters and estimates of a bivariate jump-diffusion process 
with correlated stochastic volatilities. We have still set some parameters to zero, e.g. 
ȕ12 or ρ, in order to check that he estimation is able to confi rm or reject signifi cance of 
the individual parameters. 

Table 3

Generated Bivariate Jump-diffusion Process (correlated) Stochastic Volatility Model (upper 
table) and the MCMC Estimated Parameters

Generated jump-diffusion process 1 with stochastic volatility

ȝ1 Ȝ1 ȝ1,J σ1,J α1 ȕ11 ȕ12 Ȗ1

0.003 0.0130 0.03 0.15 -0.07 0.99 0 0.13

Generated jump-diffusion process 2 with stochastic volatility

ȝ2 Ȝ2 ȝ2,J σ2,J α2 ȕ21 ȕ22 Ȗ2

0.001 0.0260 -0.02 0.17 -0.21 0.02 0.95 0.16

Correlations

ρ ρJ ρZ

0 0.3418 0
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Estimated jump-diffusion process 1 with stochastic volatility

ȝ1 Ȝ1 ȝ1,J σ1,J α1 ȕ11 ȕ12 Ȗ1

0.0018 

(5.261e-004)

0.0039 

(0.0133)

0.0256 

(0.0451)

0.1589 

(0.0209)

-0.0931 

(0.0613)

0.9703 

(0.0090)

0.0157 

(0.0125)

0.1527 

(0.0174)

Estimated jump-diffusion process 2 with stochastic volatility

ȝ2 Ȝ2 ȝ2,J σ2,J α2 ȕ21 ȕ22 Ȗ2

0.0013 

(5.543e-004)

0.0288 

(0.0051)

-0.0280 

(0.0275)

0.1800 

(0.0199)

-0.2760 

(0.0931)

0.0280 

(0.0099)

0.9326 

(0.0186)

0.1676 

(0.0254)

Estimated correlations

ρ ρJ ρZ

0.0079 (0.0241) 0.3621 (0.1264) -0.7194 (0.2454)

During implementation of the models many empirical tests have been performed. We 
have shown only a few to illustrate a good performance of the proposed estimation 
algorithm.

3.2 FX and Stock Market Data and Empirical Results

Our data set consists of CZK/EUR exchange rates and the Czech PX stock index values 
from September 1, 2004 to February 2, 2011 (Figure 4). Note that the CZK/EUR is 
quoted as the inverse of the normal EUR/CZK exchange rate, i.e. as a direct quotation 
of CZK in terms of EUR from the perspective of an EUR investor. The period of strong 
decline of the stock index and depreciation of CZK/EUR corresponds obviously to the 
fi nancial crisis in 2007-2009.

Figure 4

CZK/EUR Exchange Rate and PX Stock Index Value September 1, 2004 to February 2, 2011 
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Time series of daily returns (Figure 5) and 100 days moving window volatility (Figure 6) 
visually shows many jumps and overlapping periods of relatively high volatility. 

Figure 5

CZK/EUR Exchange Rate and PX Stock Index Daily Returns

Figure 6

CZK/EUR (lower line) and PX (upper line) 100 Days Moving Window Volatility

The Person’s correlation of the two return series is slightly negative -1.21% with p-value 
0.62, i.e. if we assumed normality than we conclude the correlation does not signifi cantly 
differ from zero. However, standard tests, e.g. Jarque-Bera test, reject normality of both 
series at the 0.1% confi dence level (Table 4). 
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Table 4. 

CZK/EUR Exchange Rate and PX Stock Index Daily Returns Descriptive Statistics

CZK/EUR daily returns PX daily returns

Mean 1.5949e-004 4.0961e-004

Standard deviation 0.0049 0.0170

Skewness 0.0292 -0.1639

Kurtosis 11.2200 15.8395

Jarque-Bera statistic 4.7357e+003 1.1561e+004

p-value <0.001 <0.001

It seems obvious that the normal VaR based on the assumption of normality and no 
correlation would underestimate the true risk of a combined CZK/EUR and PX 
investment. In order to improve our ability to predict the risk we are going to estimate 
and compare the four bivariate models described in Section 2.

Model 1: Bivariate Pure Diffusion Model (2Diff)

The simplest model we consider is the bivariate diffusion model. Table 5 shows MCMC 
estimated coeffi cients based on 3000 iterations when the fi rst 1000 have been discarded. 
The results are in line with the descriptive statistics given in Table 4. The correlation 
between the two series does not signifi cantly differ from zero in the context of this model.

Table 5. 

Estimated Parameters for the CZK/EUR and PX Pure Diffusion Bivariate Model

ȝk σk

FX returns (k=1) 1.5345e-004 (1.2927e-004) 0.0049 (8.6122e-005)

PX returns (k=2)   4.1621e-004 (4.5433e-004) 0.0172 (2.6047e-004)

ρ -0.0109 (0.0265)

Model 2: Bivariate Jump-diffusion Model (2JD)

Table 6 shows MCMC estimates of the bivariate jump-diffusion model  with correlated 
jumps, but with constant volatilities. We have again used 3000 MCMC simulations, 
non-informative priors, and discarded the fi rst 1000 ones. The initial means and 
correlations were set to 0, initial diffusion volatilities σ to 0.01 and jump standard 
deviations σj to 0.1. Figure 7 shows relatively fast convergence of the jump correlation 
ρj  to a surprisingly high level over 50% and the simulated kernel smoothed density. Note 
that the diffusion correlation ρ and the jump-size correlation ρZ  do not signifi cantly differ 
from 0.
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Table 6

Estimated Parameters for the CZK/EUR and PX Jump-diffusion Models with Constant Volatility

CZK/EUR jump-diffusion process

ȝ1 σ1 Ȝ1 ȝ1,J σ1,J

2.2486e-004 

(9.8678e-005)

0.0030 

(1.0420e-004)

0.1737 

(0.0281)

-2.9636e-004 

(7.1327e-004 )

0.0095 

(8.3013e-004)

 PX jump-diffusion process

ȝ2 σ2 Ȝ2 ȝ2,J ρZ

9.9833e-004 

(3.1909e-004) 

0.0101 

(3.3542e-004) 

0.1549   

(0.0244)
-0.0038 (0.0025) 0.0353 (0.0027) 

Correlations

ρ ρJ ρZ

-0.0412 (0.0337) 0.5401 (0.0675)            0.0086 (0.0896)

Figure 7

Convergence and the Bayesian Density of the Jump Correlation ρJ

Probably the most interesting fi nding is that the probabilities of jumps Ȝ are relatively 
high, over 15% for both return series. However, the outcome should not be so surprising 
looking at the very high kurtosis (Table 4) of both series. The jump-diffusion model 
in fact decomposes the distribution into a mix of two normal distributions, one with 
the lower standard deviation σJ  and the other with a higher (more than three times) 
standard deviation σJ. While CZK/EUR mean jump size does not signifi cantly differ 
from zero, the mean PX jump size is negative showing that the stock index tends to 
jump down rather than up, as one would expect (and as indicated by the negative 
skewness shown in Table 4).

The high probabilities of jumps contradict to our intuition of jumps being rare events. 
The MCMC estimations give us also simulated distributions of jump occurrences and 
jumps sizes that allow us to analyze the jumps in more detail. Each run of the MCMC 
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simulation samples specifi c jumps times and jump sizes. Hence for each day we may 
calculate the empirical probability of jump and identify days where “a jump probably 
happened”, i.e. where the probability of jump is larger than 50%. For those days it 
makes sense to inspect the mean value of the simulated jump sizes (conditional on the 
jump occurrence). The results are shown in Figure 8. It is obvious that the jumps are not 
distributed evenly being clustered especially in the fi nancial crises period. We will see 
that the jump clustering is essentially fi ltered out in the model with stochastic volatility. 

Figure 8

CZK/EUR and PX Returns Jump Probabilities and Mean Jump Sizes
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Model 3: Bivariate Jump-diffusion with Stochastic Volatility (2JD SV)

Before estimating the bivariate stochastic volatility model we fi rstly implement the 
univariate model  for both return series in order to inspect the relationship between the 
two latent stochastic volatilities time series.  The estimated parameters and their standard 
deviations based on 3 000 MCMC simulations are shown in Table 7. Figure 9 shows for 
the sake of illustration relatively fast convergence of the coeffi cient ȕ in case of the PX 
return process. The parameter means and standard deviations in Table 7 are based on the 
last 2 500 simulations discarding the fi rst 500. Note that by introducing the stochastic 
volatility into the model the probabilities of jumps have been signifi cantly reduced to less 
than 3% and the jump size standard deviation went up. The high value of the stochastic 
volatility (log-variance) autocorrelation coeffi cient ȕ, almost 99% for CZK/EUR and 
almost 98% for PX, shows a high persistence of stochastic volatilities that is in line with 
other empirical studies on US stock market data (e.g. Jacquier et al., 1994, Eraker et al., 
2003). The volatility of the stochastic volatility, i.e. the coeffi cient Ȗ, around 13% for 
CZK/EUR and over 21% for PX, is also in the range estimated on US data.

Table 7

Estimated Parameters for the CZK/EUR and PX Univariate Jump Diffusion Models with 
Stochastic Volatility

CZK/EUR univariate jump-diffusion process with stochastic volatility

ȝ1 Ȝ1 ȝ1,J σ1,J α1 ȕ1 Ȗ1

1.8506e-004 

(6.374e-005) 

0.0284 

(0.0083) 

-2.2616e-

004 (0.0024) 

0.0117 

(0.0018) 

-0.1205 

(0.0545) 

0.9893 

(0.0048) 

0.1313 

(0.0193) 

PX univariate jump-diffusion process with stochastic volatility

ȝ2 Ȝ2 ȝ2,J σ2,J α2 ȕ2 Ȗ2

0.0012  

(1.921e-004) 

0.0237 

(0.0068) 

0.0011 

(0.0079) 

0.0427  

(0.0066) 

-0.1957  

(0.0613) 

0.9781 

(0.0069) 

0.2119 

(0.0247) 

Figure 9

Convergence and MCMC Simulated Density of the Parameter β for PX Returns
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The latent stochastic volatilities are sampled at each MCMC simulation run and we get 
a distribution for each particular day. In order to investigate the relationship between 
the CZK/EUR and PX volatilities we use the mean estimates, specifi cally given by the 
equation exp / 2)ˆ (i ih  , where 

ih  is the MCMC mean of normally distributed logVi

sampled values. Figure 10 shows that the mean stochastic volatility for both series 
copy well the pattern of the observed returns. The fi gures also explain why many jumps 
identifi ed in the constant volatility model have been fi ltered out in the stochastic volatility 
model.

Figure 10

CZK/EUR and PX Returns (fi ne bars) and Mean Stochastic Volatilities (dark line)

The mean stochastic volatility series and mean estimated coeffi cients α, ȕ and Ȗ may be 
used to obtain the residuals of the two series eV

F  X,i and eV
P   X,i. The Pearson’s correlation of the 

residuals is relatively low 5.7% and not signifi cant at 1% confi dence level, however, the 
correlation of ,FX ih and ,PX ih  comes out highly signifi cant 61.66% as indicated visually 
by Figure 10. Consequently, having parsimony in mind, it is reasonable to specify the 
bivariate jump-diffusion model with correlated stochastic volatilities just through the 
mutual Granger causality and without correlated volatility residuals, i.e. according to the 
model (23). 

The model is estimated by the methodology that has been outlined in Section 2.4 and the 
resulting estimates are shown in Table 8. We have run again 3 000 simulations, used the 
last 2 000, and discarded the fi rst 1 000. Figure 11 shows relatively fast convergence of the 
interesting coeffi cient ȕ21. The signifi cant positive value 0.035 proves there is a Granger 
dependence of the PX stochastic volatility on the CZK/EUR stochastic volatility. On the 
other hand, the coeffi cient ȕ12 refl ecting the causality in the opposite direction turns out 
not to be signifi cant. This corresponds to our intuition: the FX market is more liquid and 
closely linked to the global markets while the Czech stock market liquidity is relatively 
low and in a sense behind the global FX market. It can be verifi ed that the VAR(1) 
process estimated coeffi cients imply a high Pearson’s correlation around  58% close to 
our fi nding based on the univariate models. 

0 200 400 600 800 1000 1200 1400 1600 1800
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05
CZK/EUR mean stochastic volatility

0 200 400 600 800 1000 1200 1400 1600 1800
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
PX mean stochastic volatility

CZK/EUR mean stochastic volatility CZK/EUR mean stochastic volatility

DOI: 10.18267/j.pep.451



278      PRAGUE ECONOMIC PAPERS, 2, 2013

Table 8

Estimated Parameters for the Bivariate Jump Diffusion Models with Granger Related 
Stochastic Volatilities

CZK/EUR jump-diffusion process with stochastic volatility

ȝ1 Ȝ1 ȝ1,J σ1,J α1 ȕ11 ȕ12 Ȗ1

1.5188e-004 

(5.994e-005)

0.0129 

(0.0057)

-9.18e-004 

(0.0057)

0.0127 

(0.0016)

-0.2694 

(0.0972)

0.9692 

(0.0125)

0.0086 

(0.0087)

0.2112 

(0.0316)

PX jump-diffusion process with stochastic volatility

ȝ2 Ȝ2 ȝ2,J σ2,J α2 ȕ21 ȕ22 Ȗ2

0.0013 

(1.809e-004)

0.0117 

(0.0048)

-0.0199 

(0.0143)

0.0447 

(0.0060)

0.0220 

(0.0827)

0.0350 

(0.0092)

0.9582 

(0.0078)

0.2268 

(0.0174)

Correlations

ρ ρJ ρZ

-0.0394 (0.0267) 0.2638 (0.1927) 0.4713 (0.3593)

Figure 11

MCMC Convergence and Density of the Coeffi cient Refl ecting the Granger Dependence of the 
PX Stochastic Volatility on the CZK/EUR Stochastic Volatility

Finally we may inspect the behaviour of jumps. It is interesting to note that the jump 
probability fell to 1.3% in case of CZK/EUR and 1.2% in case of PX returns. Figure 12 
shows the MCMC empirical daily jump probabilities. For both series there is only one 
day with jump probability higher than 50% and a few days with jump probabilities over 
20%. The stochastic volatility component has clearly fi ltered out the clustering and the 
jumps seem to be distributed evenly. There is still a positive jump occurrence correlation 
0.26 and it is interesting to note that in this case the jump size correlation is positive 0.47 
(though not highly signifi cant) meaning that if there is a coincidence of jumps on both 
markets than the jumps probably go in the same direction. 
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Looking at the jump analysis in the jump-diffusion models with and without stochastic 
volatility it is obvious that jump identifi cation strongly depends on the stochastic model 
chosen.

Figure 12

CZK/EUR and PX Returns Jump Probabilities in the Context of the Bivariate Stochastic 
Volatility Model 

Model 4: Bivariate Diffusion Model with Stochastic Volatility (2SV)

Since the estimated jump probabilities in the previous models have been low and not 
highly signifi cant Table 9 gives, for the sake of completes, the estimates of the bivariate 
stochastic volatility model without jumps. It is interesting to note that the estimated 
coeffi cients do not differ signifi cantly from the results in Table 8 (with jump parameters 
missing).

Table 9

Estimated Parameters for the Bivariate Stochastic Volatility Model without Jumps

diffusion process FX with stochastic volatility

ȝ1 Ȝ1 ȝ1,J σ1,J α1 ȕ11 ȕ12 Ȗ1

1.7474e-004 

(5.2611e-004)
- - -

-0.1981 

(0.0951)

0.9791 

(0.0121)

0.0041 

(0.0077)

0.1750 

(0.0393)

diffusion process PX with stochastic volatility

ȝ2 Ȝ2 ȝ2,J σ2,J α2 ȕ21 ȕ22 Ȗ2

0.0013 

(0.0013)

-0.0111 

(0.0867)

0.0387 

(0.0100)

0.9501 

(0.0105)

0.2564 

(0.0250)

Correlations

ρ ρJ ρZ

-0.0371 (0.0257) - -
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3.3 Comparison of the Models 

The four estimated models can be compared using the deviance information criterion 
(DIC) measure shown in Table 10. The last two columns give the goodness-of-fi t and 
the model complexity measures. For example, in case of the bivariate diffusion model 
pD equals to 5 (after rounding to units), i.e. to the number of the parameters estimated, as 
expected. It is more diffi cult to interpret the pD values in case of the other models. The 
high complexity of the Model 2 (2JD) could be explained by existence of many jumps 
where the size needs to be in addition estimated. The high value of pD for the Model 4 
(2SV) compared to the Model 3 (2JD SV) is, however, slightly puzzling. 

An absolute difference in DIC over 10 is already considered important (Spiegelhalter 
et al, 2002, Asai et al., 2006), and so the models with jumps and/or stochastic volatility 
strongly outperform, in terms of DIC, the pure diffusion model. The best ranked model 
is the Model 2 (2JD) followed by the Model 3 (2JD SV). The difference between the 
DIC of 2JD and 2JDSV might be disappointing from the perspective of the stochastic 
volatility modeling and the estimation effort. However, the 2JD model estimates many 
jump sizes signifi cantly improving the goodness-of-fi t with respect to the estimation 
dataset, but the jump sizes estimates do not have any added value for predictions of future 
returns (distributions). This is not the case of the 2JDSV model where the last estimated 
stochastic volatility is used to predict future volatilities and return distributions. 

The ability of the different models to predict future distributions (in particular VaR) 
could be compared using a back-testing procedure. This is unfortunately unfeasible at the 
moment since one MCMC estimation takes at least a few hours on a relatively powerful 
desk-top computer and back-testing would require repeating the procedure hundreds or 
thousands of times.

Table 10

Deviance Information Criterion of the Four Estimated Bivariate Models

DIC D pD

Model 1 (2Diff) -22 019 -22 024 5

Model 2 (2JD) -25 294 -25 479 185

Model 3 (2JD SV) -24 369 -24 430 61

Model 4 (2SV) -24 068 -24 228 160

VaR Estimations

We are going to show VaR estimations given by the four tested models and by a benchmark 
model to illustrate importance of the model choice. Table 11 provides a comparison of 
the estimated VaR measures for the sum of lognormal returns rCZK/EUR + rPX  calculated 
using the different models and by the methodology described in Section 2.5. The returns 
could be interpreted for example as returns on a PX stock index investment from the 
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perspective of a EUR based investor as of February 2, 2011. The VaR measure has 
been calculated in 1, 10, and 30 days horizon, on the 95% and 99% probability level, 
and conditional on the point parameter estimates (Table 5 -Table 9 and the least mean 
variance for the SV models) or on the corresponding MCMC parameter distributions. 
The last line gives EWMA VaR estimates used frequently in practice, for the sake of 
comparison with our models. It is based on exponentially weighted moving average 
(EWMA) covariance matrix with the weight set at 0.97. The number of Monte Carlo 
simulations has been set to 40 000.

Since the jump-diffusion (2JD) model is using constant volatilities, it is comparable rather 
to the diffusion model (2Diff), corresponding to a standard normal VaR estimate. On the 
other hand, the jump-diffusion model with stochastic volatility (2JDSV) starts with the last 
estimated volatility (as of February 2, 2011) and so it can be meaningfully compared rather 
against the benchmark EWMA model that works a recent volatility trend. 

The 2JD VaR does not differ signifi cantly from the 2Diff VaR on the 95% probability 
level, but, not surprisingly, the difference is more signifi cant on the 99% probability level 
and in the short 1- day horizon. Over longer time horizons the jumps mix better with 
the normal returns and the two approaches become closer. In case of the jump-diffusion 
model with stochastic volatility we observe the opposite. The 2JDSV and 2SV VaR is 
similar to EWMA VaR in the 1-day horizon, but the difference becomes more pronounced 
in longer time horizon due to the stochastic volatility effect. The 30 days JDSV and 2SV 
VaR on the 99% probability level exceeds the EWMA VaR by almost 40%. 

It should be pointed that no defi nite conclusion can be drawn from the differences in 
VaR estimates. Nevertheless, if the true process was a pure diffusion one, then the choice 
of the model should not matter. Signifi cant parameters of the models with jumps and 
stochastic volatilities, the goodness-of-fi t comparison, and the different VaR values 
demonstrate that the choice of model is important.

Table 11

Comparison of  Value at Risk in the 1, 10, or 30 Day Horizon, Based on Point Parameter 
Estimates /Bayes Simulation,  and on the 95%, 99% Probability Level Estimated Using the 
Different Models  

VaR / Bayes 
VaR

 (1,95%)  (1,99%)  (10,95%)  (10,99%) (30,95%) (30,99%)

Model 1 
(2Diff)

0.0299 /  

0.0297

0.0421 /  

0.0417

0.0985 / 

0.0986

0.1361 / 

0.1361

0.1780 / 

0.1787

0.2451 / 

0.2433

Model 2 
(2JD)

0.0240 / 

0.0242

0.0520 / 

0.0532

0.0969 / 

0.0962

0.1414 / 

0.1405

0.1743 / 

0.1781

0.2437 /  

0.2480

Model 3 
(2JDSV) 

0.0177 

0.0179

0.0266 

0.0284

0.0654 

0.0678

0.1041 

0.1105

0.1272 

0.1280

0.1957 

0.1988

Model 4 
(2SV)

0.0213 / 

0.0214

0.0293 / 

0.0300

0.0763 / 

0.0769

0.1040 / 

0.1086

0.1499 / 

0.1505

0.2048 / 

0.2092

EWMA 0.0185 0.0262 0.0586 0.0828 0.1014 0.1435 
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3. Conclusion

We have proposed and tested a bivariate jump-diffusion model with stochastic volatilities 
where the jump occurrence, jump-sizes, and the volatilities are, in general, correlated. 
The stochastic volatility correlation is captured through the Granger causality in both 
directions.  Our proposed MCMC estimation technique extends the one of Jacquier et 

al. (2007). The tests have demonstrated ability of the algorithm to recover consistently 
the true parameters used to generated testing data. The model has been, for the sake 
of empirical illustration, applied on the CZK/EUR and the Czech stock index PX data 
(2004-2011). The results show that there is Granger causality in stochastic volatility 
going from the CZK/EUR market to the Czech stock market but not vice versa. The 
estimated probabilities of jumps are around 1.2%. The jumps and jump sizes appear to 
be strongly correlated. We have compared the model with the pure diffusion model, with 
the stochastic volatility model without jumps, and with the jump-diffusion model with 
constant volatility. It is interesting to note that the probabilities of jumps in the pure jump 
diffusion model would differ dramatically being more than 15% for both processes, if 
the volatility was constant. The four tested models have been compared applying the 
deviance information criterion (DIC) with the pure jump-diffusion and the stochastic 
volatility jump-diffusion models performing the best. However, it can be argued that the 
proposed stochastic volatility jump-diffusion model giving forward looking volatility 
estimates is the most appropriate for VaR calculations and generally for future returns 
distribution modeling. 

The research can be extended in several directions: the model and the estimation 
technique can be applied to other time series, to high frequency data, and generalized to 
the general multivariate case requiring further computational effi ciency improvements.
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