Prague Economic Papers 2025, 34(3):304-346 | DOI: 10.18267/j.pep.897

Assessing the Early Warning Capabilities of GaR: A Probabilistic Approach to Recession Detection in CEE Economies

Gheorghe-Alexandru Tarta ORCID...
Bucharest University of Economic Studies, Romania

This paper introduces a novel application of Growth-at-Risk (GaR) as an early warning system (EWS) for predicting recessions. By transforming GaR into a classification model, we assess its ability to signal economic downturns across 11 Central and Eastern European (CEE) economies from 2005 to 2024. We compare GaR’s performance with logistic regression across eight forecasting horizons. Our findings indicate that GaR slightly outperforms the logit model when financial conditions are used as the primary predictor. However, when additional factors such as agents’ expectations and financial flows are incorporated, the performance gap narrows. Our results suggest that Growth-at-Risk can function as an effective early warning system without significant performance trade-offs, while offering a flexible and theoretically grounded alternative. Policymakers can leverage Growth-at-Risk not only as a tail risk instrument but also as a classifier, enhancing their forecasting capabilities.

Keywords: Growth-at-Risk, early warning systems, financial conditions, recession probability
JEL classification: C18, E44, G01

Received: March 11, 2025; Revised: August 9, 2025; Accepted: September 15, 2025; Published: October 29, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Tarta, G. (2025). Assessing the Early Warning Capabilities of GaR: A Probabilistic Approach to Recession Detection in CEE Economies. Prague Economic Papers34(3), 304-346. doi: 10.18267/j.pep.897
Download citation

References

  1. Adrian, T., Boyarchenko, N., Giannone, D. (2019). Vulnerable growth. American Economic Review, 109(4), 1263-1289. https://doi.org/10.1257/aer.20161923 Go to original source...
  2. Adrian, T., Duarte, F., Grinberg, F., Mancini-Griffoli, T. (2019). Monetary Policy and Financial Conditions: A Cross-Country Study. FRBNY. Staff Reports No. 890. https://www.newyorkfed.org/research/staff_reports/sr890 Go to original source...
  3. Adrian, T., Duarte, F., Liang, N., Zabczyk, P. (2020). NKV: A New Keynesian Model with Vulnerability. AEA Papers and Proceedings, 110, 470-476. https://doi.org/10.1257/pandp.20201023 Go to original source...
  4. Adrian, T., Grinberg, F., Liang, N., Malik, S., Yu, J. (2022). The term structure of Growth-at-Risk. American Economic Journal: Macroeconomics, 14(3), 283-323. https://doi.org/10.1257/mac.20180428 Go to original source...
  5. Aikman, D., Bridges, J., Hacioglu Hoke, S., O'Neill, C., Raja, A. (2019). Credit, capital and crises: a GDP-at-Risk approach. Bank of England Working Paper No. 824. https://www.bankofengland.co.uk/working-paper/2019/credit-capital-and-crises-a-gdp-at-risk-approach
  6. Arbatli-Saxegaard, E. C., Juelsrud, R. E. (2020). Countercyclical capital requirement reductions, state dependence and macroeconomic outcomes. Norges Bank WP 2020/9. https://www.norges-bank.no/en/news-events/publications/Working-Papers/2020/92020/
  7. Auer, S. (2017). A Financial Conditions Index for the CEE Economies. Bank of Italy Temi di Discussione No. 1145. https://www.bancaditalia.it/pubblicazioni/temi-discussione/2017/2017-1145/index.html?com.dotmarketing.htmlpage.language=1&dotcache=refresh Go to original source...
  8. Azzalini, A., Capitanio, A. (2003). Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65(2), 367-389. https://doi.org/10.1111/1467-9868.00391 Go to original source...
  9. Banerjee, R., Hofmann, B., Mehrotra, A. (2022). Corporate investment and the exchange rate: The financial channel. International Finance, 25(3), 296-312. https://doi.org/10.1111/infi.12415 Go to original source...
  10. Borio, C. E. V., Drehmann, M., Xia, F. D. (2019). Predicting Recessions: Financial Cycle versus Term Spread. BIS Working Paper No. 818. https://www.bis.org/publ/work818.htm
  11. Bussiere, M., Lhuissier, S. (2024). What does an inversion of the yield curve tell us?. Banque de France. Bulletin de la Banque de France, 250(3). https://www.banque-france.fr/en/publications-and-statistics/publications/what-does-inversion-yield-curve-tell-us
  12. Brave, S., Butters, R. A. (2011). Monitoring financial stability: A financial conditions index approach. Economic Perspectives, 35(Q I), 22-43. https://ssrn.com/abstract=1758783
  13. Camacho, M., & Pérez-Quiros, G. (2010). Introducing the euro-sting: Short-term indicator of euro area growth. Journal of Applied Econometrics, 25. https://doi.org/10.1002/jae.1174 Go to original source...
  14. Copaciu, A. M., Horobet, A. (2022). Spillovers in the presence of financial stress - an application to Romania. Journal for Economic Forecasting, 0(2), 29-43. https://ideas.repec.org/a/rjr/romjef/vy2022i2p29-43.html.
  15. Chernozhukov, V., Fernández-Val, I. (2011). Inference for Extremal Conditional Quantile Models with Application to Market and Birthweight Risks. Review of Economic Studies, 78(2), 559-589. https://doi.org/10.48550/arXiv.0912.5013 Go to original source...
  16. Dewachter, H., Báèa, P., Beeckman, W. (2023). The ESIs: A finger on the pulse of the European economy? KBC Institute Research Report. https://www.kbc.com/en/economics/publications/the-esis-a-finger-on-the-pulse-of-the-european-economy.html
  17. Duprey, T., Klaus, B., Peltonen, T. (2017). Dating systemic financial stress episodes in the EU countries. Journal of Financial Stability, 32, 30-56. https://doi.org/10.1016/j.jfs.2017.07.004 Go to original source...
  18. Duprey, T., Ueberfeldt, A. (2020). Managing GDP tail risk. Bank of Canada. Staff WP 20-3. https://www.bankofcanada.ca/wp-content/uploads/2020/01/swp2020-3.pdf
  19. Eguren-Martin, F., O'Neill, C., Sokol, A., von dem Berge, L. (2024). Capital flows-at-risk: Push, pull and the role of policy. Journal of International Money and Finance, 147(C). https://doi.org/10.1016/j.jimonfin.2024.103146 Go to original source...
  20. Emter, L., Moura, A., Setzer, R., Zorell, N. (2024). Monetary Policy and Growth-at-Risk: The Role of Institutional Quality. European Central Bank. ECB Working Paper No. 2989. https://www.bportugal.pt/sites/default/files/documents/2024-10/WP202414.pdf Go to original source...
  21. Eser, F., Lemke, W., Nyhom, K., Radde S., Vladu, A.L. (2023). Tracing the impact of the ECB's asset purchase program on the yield curve, International Journal of Central Banking, 19(3), 359-422. Available at https://ideas.repec.org/a/ijc/ijcjou/y2023q3a9.html
  22. Estrella, A., Hardouvelis, G. A. (1989). The term structure as a predictor of real economic activity. Federal Reserve Bank of New York. FRBNY Working Papers No 7.
  23. Ferrari Minesso, M., Lebastard, L., Le Mezo, H. (2023). Text-based recession probabilities. IMF Economic Review, 71, 415-438. https://doi.org/10.1057/s41308-022-00177-5 Go to original source...
  24. Fonsenca, L., McQuade, P., Van Robays, I., Vladu, A.L. (2023). The inversion of the yield curve and its information content in the euro area and the United States. European Central Bank. ECB Economic Bulletin 7/2023, 42-46. Available at https://ideas.repec.org/a/ecb/ecbbox/202300072.html
  25. Fornari, F., Lemke, W. (2010). Predicting recession probabilities with financial variables over multiple horizons. European Central Bank. ECB Working Paper No. 1255. https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp1255.pdf?17faf3181cddc6090d149d4c62a35f55 Go to original source...
  26. Franta, M., Gambacorta, L. (2020). On the effects of macroprudential policies on Growth-at-Risk. Economics Letters, 196, 109501. https://doi.org/10.1016/j.econlet.2020.109501 Go to original source...
  27. Furno, F., Giannone, D. (2024). Nowcasting Recession Risk. Research Methods and Applications on Macroeconomic Forecasting. Available at https://www.amazon.science/publications/nowcasting-recession-risk
  28. Gächter, M., Geiger, M., Hasler, E. (2023). On the Structural Determinants of Growth-at-Risk. International Journal of Central Banking, 19(2), 251-293. Available at https://ideas.repec.org/a/ijc/ijcjou/y2023q2a5.html
  29. Galán, J. (2020). The benefits are at the tail: Uncovering the impact of macroprudential policy on Growth-At-Risk. Banco de España. Banco de España Working Papers, WP No. 2007. https://doi.org/10.1016/j.jfs.2020.100831 Go to original source...
  30. Ganchev, T. G., Paskaleva, M. (2021). Financial condition indices and pandemic uncertainty as recession triggers. Dos Algarves: Tourism, Hospitality & Management Journal, 39, Article 7. https://doi.org/10.18089/DAMeJ.2021.39.7 Go to original source...
  31. Giglio, S., Kelly, B. T., Pruitt, S. (2015). Systemic Risk and the Macroeconomy: An Empirical Evaluation. Fama-Miller Working Paper, Chicago Booth Research Paper No. 12-49. https://doi.org/10.1016/j.jfineco.2016.01.010 Go to original source...
  32. Grab, J., Titzck, S. (2020). US yield curve inversion and financial market signals of recession. European Central Bank. ECB Economic Bulletins, 1/2020. https://www.ecb.europa.eu/press/economic-bulletin/focus/2020/html/ecb.ebbox202001_02~20b7c9a04e.en.html
  33. Grecu, R.A., Cheptis, A. (2024). Synchronization of financial cycles in selected Central and Eastern European countries. Journal of Eastern Europe Research in Business and Economics, 2024(2024), 735542. https://doi.org/10.5171/2024.735542 Go to original source...
  34. Hamilton, J.D. (2018). Why you should never use the Hodrick-Prescott filter. The Review of Economics and Statistics, 100(5), pp.831-843. https://doi.org/10.1162/rest_a_00706 Go to original source...
  35. Hatzius, J., Stehn, S. J. (2018). The case for a financial conditions index. Global Economics Paper, Goldman Sachs Economic Research.
  36. Ho, G., Lu, Y. (2013). A Financial Conditions Index for Poland (IMF Working Paper No. 252). International Monetary Fund. https://www.researchgate.net/publication/263529231_A_Financial_Conditions_Index_for_Poland Go to original source...
  37. Hollo, D., Kremer, M., Lo Duca, M. (2012). CISS - A composite indicator of systemic stress in the financial system. European Central Bank. ECB Working Paper Series 1426. https://www.econstor.eu/bitstream/10419/153859/1/ecbwp1426.pdf Go to original source...
  38. James, A., Abu-Mostafa, Y., Qiao, X. (2018). Machine learning for recession prediction and dynamic asset allocation. The Journal of Financial Data Science (forthcoming). http://dx.doi.org/10.3905/jfds.2019.1.007 Go to original source...
  39. Jarmulska, B. (2022). Random forest versus logit models: Which offers better early warning of fiscal stress?. Journal of Forecasting, 41(3), 455-490. https://doi.org/10.1002/for.2806 Go to original source...
  40. Jordà, Ò., Schularick, M., Taylor, A. M. (2013). When credit bites back. Journal of Money, Credit and Banking, 45(1), 3-28. https://doi.org/10.1111/jmcb.12069 Go to original source...
  41. Kearns, J., Patel, N. (2016). Does the financial channel of exchange rates offset the trade channel? BIS Quarterly Review, Bank for International Settlements, December. https://www.bis.org/publ/qtrpdf/r_qt1612i.htm
  42. Kipriyanov, A. (2022). Comparison of Models for Growth-at-Risk Forecasting. Russian Journal of Money and Finance, 81(1), 23-45. https://doi.org/10.31477/rjmf.202201.23 Go to original source...
  43. Lang, J. H., Izzo, C., Fahr, S. A., Ruzicka, J. (2019). Anticipating the bust: A new cyclical systemic risk indicator to assess the likelihood and severity of financial crises. European Central Bank. ECB Occasional Paper Series 219. https://www.ecb.europa.eu/pub/pdf/scpops/ecb.op219~7483083881.en.pdf Go to original source...
  44. Lang, J. H., Rusnák, M., Greiwe, M. (2025). Medium-term Growth-at-Risk in the Euro Area. IMF Economic Review, 2025. https://doi.org/10.1057/s41308-024-00272-9 Go to original source...
  45. Liu, W., Moench, E. (2016). What predicts US recessions?. International Journal of Forecasting, 32(4), 1138-1150. https://doi.org/10.1016/j.ijforecast.2016.02.007 Go to original source...
  46. López-Salido, D. & Loria, F., 2024. Inflation at risk. Journal of Monetary Economics, 145(Supplement), 103570. https://doi.org/10.1016/j.jmoneco.2024.103570 Go to original source...
  47. Navarro C.L.A., Damen J.A.A., Takada T., S.W.J. Nijman, P. Dhiman, J. Ma, G.S. Collins, R. Bajpai, R.D. Riley, K.G.M. Moons, L. Hooft (2021). Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review. BMJ 375. https://doi.org/10.1136/bmj.n2281 Go to original source...
  48. Petronevich, A., Sahuc, J.-G. (2019). A new Banque de France Financial Conditions Index for the euro area. Banque de France Bulletin, No. 223. https://publications.banque-france.fr/en/new-banque-de-france-financial-conditions-index-euro-area
  49. Prasad, A., Elekdag, S. A., Jeasakul, P., Lafarguette, R., Alter, A., Feng, A. X., & Wang, C. (2019). Growth at Risk: Concept and Application in IMF Country Surveillance. International Monetary Fund. IMF Working Paper No. 2019/036. https://doi.org/10.5089/9781484397015.001 Go to original source...
  50. Psimopoulos, A. (2020). Forecasting economic recessions using machine learning: An empirical study in six countries. South-Eastern Europe Journal of Economics, 18(1), 40-99. https://www.asecu.gr/old_files/Seeje/issue34/issue34-psimopoulos.pdf
  51. Puglia, M., Tucker, A. (2020). Machine learning, the treasury yield curve and recession forecasting. Finance and Economics Discussion Series 38/2020. https://doi.org/10.17016/FEDS.2020.038 Go to original source...
  52. Sarlin, P., Holopainen, M. (2016). Toward robust early-warning models: a horse race, ensembles and model uncertainty. European Central Bank. ECB WP Series No. 1900. https://doi.org/10.48550/arXiv.1501.04682 Go to original source...
  53. ©krinjariæ, T. (2024). Growth-at-Risk for macroprudential policy stance assessment: a survey. Bank of England. Bank of England Working Paper No 1075. https://www.bankofengland.co.uk/working-paper/2024/growth-at-risk-for-macroprudential-policy-stance-assessment-a-survey
  54. Suarez, J. (2022). Growth-at-Risk and macroprudential policy design. Journal of Financial Stability, 60, 101008. https://doi.org/10.1016/j.jfs.2022.101008 Go to original source...
  55. Szabo, M. (2020). Growth-at-Risk: Bayesian Approach. Czech National Bank. Czech National Bank Working Papers No. 2020/3. https://www.cnb.cz/en/economic-research/research-publications/cnb-working-paper-series/Growth-at-Risk-Bayesian-Approach-00001
  56. Tkacova, A., & Gavurova, B. (2023). Economic sentiment indicators and their prediction capabilities in business cycles of EU countries. Oeconomia Copernicana, 14(3), 977-1008. https://doi.org/10.24136/oc.2023.029 Go to original source...
  57. Vrontos, S. D., Galakis, J., & Vrontos, I. D. (2021). Modeling and predicting U.S. recessions using machine learning techniques. International Journal of Forecasting, 37(2), 647-671. https://doi.org/10.1016/j.ijforecast.2020.08.005 Go to original source...
  58. Yanchev, M. (2022). Deep Growth-at-Risk Model: Nowcasting the 2020 Pandemic Lockdown Recession in Small Open Economies. Economic Studies Journal, 7, 20-41. https://ideas.repec.org/a/bas/econst/y2022i7p20-41.html

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.