Prague Economic Papers 2016, 25(3):335-353 | DOI: 10.18267/j.pep.563

Measuring Yields: Arithmetic, Geometric and Horizon-Consistent Average

Michal Dvořák
Faculty of Finance and Accounting, University of Economics, Prague, Department of Monetary Theory and Policy, and Czech National Bank, Czech Republic (michal@michaldvorak.eu).

The choice of averaging method has considerable impact on the average yield of a financial variable. Usually, geometric average is preferred, though dissenting opinions exist. Here it is shown that the problem has a consistent solution, which is called the horizon-consistent average. It is shown why geometric and arithmetic average calculations are almost always biased. When using company valuation's most common SP500 dataset by Ibbotson Associates for 1928-2012 and the recommended 10-year forecasting horizon, consistent with the 10-year government securities in a CAPM model, the arithmetic average is severely flawed. On the other hand, the geometric average for similar horizons does not deviate much from the horizon-consistent average.

Klíčová slova: yield, risk premium, historical yield, geometric average, arithmetic average
JEL classification: G1, G32

Zveřejněno: 1. leden 2016  Zobrazit citaci

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Dvořák, M. (2016). Measuring Yields: Arithmetic, Geometric and Horizon-Consistent Average. Prague Economic Papers25(3), 335-353. doi: 10.18267/j.pep.563
Stáhnout citaci

Reference

  1. Bemerew, D. A. (1999), "Cointegration between Stock Market Indices: The Case of the Slovak and Czech Stock Price Indices." Prague Economic Papers, No. 1.
  2. Damodaran, A. (2013), "Annual Returns on Stock, T. Bonds and T. Bills: 1928 - Current." Stern School of Business. New York University. Available from: http://people.stern.nyu.edu/adamodar/New_Home_Page/datafile/histretSP.html
  3. Damodaran. A. (2013a), "Estimating Risk Parameters." Stern School of Business. New York University. Available from: http://people.stern.nyu.edu/adamodar/pdfiles/papers/beta.pdf.
  4. Damodaran. A. (2013b), "Equity Risk Premiums (ERP): Determinants. Estimation and Implications - The 2013 Edition." Stern School of Business. New York University. Available from: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2238064 Přejít k původnímu zdroji...
  5. Damodaran. A. (2008), "What Is the Riskfree Rate? A Search for the Basic Building Block." Stern School of Business. New York University. Available from: http://people.stern.nyu.edu/adamodar/pdfiles/papers/riskfreerate.pdf Přejít k původnímu zdroji...
  6. Dariusz, F. (2013), "Returns and Persistence of Investment Fund Performance in the Czech Republic." Prague Economic Papers, Vol. 22, No. 3, pp. 324-342. Přejít k původnímu zdroji...
  7. Fama, E. F., French, K. R. (1988), "Permanent and Transitory Components of Stock Prices." Journal of Political Economy, Vol. 96, pp. 246-273. Přejít k původnímu zdroji...
  8. Indro, D. C., Lee, W. Y. (1997), "Biases in Arithmetic and Geometric Averages as Estimates of Long-Run Expected Returns and Risk Premia." Financial Management, Vol. 26, No. 4, pp. 81-90, http://dx.doi.org/10.2307/3666130 Přejít k původnímu zdroji...
  9. Kavker, A., Festic, M. (2011), "Modelling Stock Exchange Index Returns in Different GDP Growth Regimes." Prague Economic Papers, Vol. 20, No. 1, pp. 3-22. Přejít k původnímu zdroji...
  10. Mařík, M., et al. (2011), Metody oceňování podniku pro pokročilé: Hlubší pohled na vybrané problémy. Prague: Ekopress.
  11. Trešl, J. (1999), "Prague Stock Exchange: Sectorial Indices Development in 1997." Prague Economic Papers, Vol. 8, No. 1. Přejít k původnímu zdroji...
  12. Trešl, J., Blatná, D. (2007), "Dynamic Analysis of Selected European Stock Markets." Prague Economic Papers, Vol. 16, No. 4, pp. 291-302. Přejít k původnímu zdroji...
  13. Veselý, J. (2004), Základy matematické analýzy. První díl. Prague: Matfyzpress.

Tento článek je publikován v režimu tzv. otevřeného přístupu k vědeckým informacím (Open Access), který je distribuován pod licencí Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), která umožňuje nekomerční distribuci, reprodukci a změny, pokud je původní dílo řádně ocitováno. Není povolena distribuce, reprodukce nebo změna, která není v souladu s podmínkami této licence.