Prague Economic Papers 2013, 22(3):358-384 | DOI: 10.18267/j.pep.457
Complex Price Dynamics in the Modified Kaldorian Model
- 1 University of Economics, Prague, nám. W. Churchilla 4, 130 67 Prague 3 (kodera@vse.cz).
- 2 Institute of Information Theory and Automation, AS CR, Pod Vodárenskou věží 4, 182 08 Prague 8 (vosvrda@utia.cas.cz).
In this article we analyse a neoclassical model of inflation. Our aim is to reconstruct the neoclassical theory of inflation to obtain a model which generates non-periodical oscillations of price level. This model is considered to be a realistic approximation of actual price level evolution. We start our analysis with the Fisherian equation of exchange. The assumption on non-variability of the velocity of money circulation parameter is relaxed in favour of dependence on expected inflation. The resulting model of inflation is a two-equation model where price evolution depends on production dynamics which is assumed to be an exogenous variable. After that, the two-equation model is re-formulated as an autonomous system to a model where production dynamics is determined by a Kaldorian type's model. By adding Kaldor's model to the two equation system, we create a four equation model. Both our models are able to generate more complex dynamics, i.e. non-linear cycles and chaos, which we examine by generating time series from numerical example and analyse them with the help of an advanced non-linear method.
Klíčová slova: Price dynamics, two-equation model, four-equation model, numerical examples, non-linear time series analysis
JEL classification: E32, E37
Zveřejněno: 1. leden 2013 Zobrazit citaci
Reference
- Allen, R. D. G. (1956), Mathematical Economics. London: Macmillan.
- Arlt, J., Kodera, J., Mandel, M., Tomšík, V. (2006), "Monetary Approach to Inflation: A Medium Term Structural Model in a Small Open Economy." Politická Ekonomie, Vol. 54, No. 3, pp. 326-338.
Přejít k původnímu zdroji...
- Chiarella, C. (1990), The Elements of a Nonlinear Theory of Economic Dynamics. Berlin: Springer Verlag.
Přejít k původnímu zdroji...
- Flaschel, P., Franke, R., Semmler, W. (1997), Dynamic Macroeconomics. Cambridge, Massachusetts: MIT Press.
- Friedman, M. (1956), "The Quantity Theory of Money-A Reastatement." In "Studies in Quantity Theory of Money." Chicago: The University of Chicago Press.
- Frisch, R. (1933), "Propagation Problems and Impulse Problems in Dynamic Economics." In Allen and Unwin (eds.): Essays in Honor of Gustav Cassel. London.
- Gabisch, G., Lorenz, H. W. (1989), Business Cycle Theory. Berlin: Springer Verlag.
Přejít k původnímu zdroji...
- Goodwin, R. M. (1951), "The Non-Linear Accelerator and Persistence of Business Cycle." Econometrica, Vol.19, No.1, pp. 1-17.
Přejít k původnímu zdroji...
- Guckenheimer, J., Holmes, P. (1986), Non-Linear Oscillation, Dynamical Systems and Bifurcations of Vector Fields. New York: Springer Verlag.
- Hegger, R., Kantz, H., Schreiber, T. (1999), "Practical Implementation of Non-linear Time Series Methods: The TISEAN Package", CHAOS 9.
Přejít k původnímu zdroji...
- Horák, J., Krlín, L., Raidl, A. (2003), Deterministický chaos a jeho fyzikální aplikace. Praha: Academia.
- Kaldor, N. (1940), "A Model of the Trade Cycle." Economic Journal, 50, pp. 78-92.
Přejít k původnímu zdroji...
- Kalecki, M. (1971). Selected Essays on the Dynamics of the Capitalist Economy, 1933-1970. Cambridge: Cambridge University Press.
- Kantz, H., Schreiber, T. (1997), Non-Linear Time Series Analysis. Cambridge: Cambridge Nonlinear Science Series.
- Kodera, J., Vošvrda, M. (2006), "Product, Capital and Price Dynamics in the Simple Model of Closed Economy (Produkt, kapitál a cenový pohyb v jednoduchém modelu uzavřené ekonomiky)." Politická ekonomie Vol. 54, No. 3, pp. 339-350.
Přejít k původnímu zdroji...
- Kodera, J., Sladký, K., Vošvrda, M. (2003), "The Extended Kalecki-Kaldor Model Revisited," In Proc. 21th Internat. Conference Mathematical Methods in Economics (M. Houška, ed.), Faculty of Economics, Czech University of Agriculture, Praha, pp. 160-165.
- Kodera, J. (2002), "Four Equation Model of Price Dynamics." In Proc. 20th Internat. Conference Mathematical Methods in Economics, University of Economics, Ostrava, pp. 151-155.
- Kuznetsov, Y. A. (1998), Elements of Applied Bifurcation Theory. Berlin: Springer Verlag.
- Kydland, F. E., Prescott, E. C. (1982), "Time to Build and Aggregate Fluctuations." Econometrica 50 (6): pp. 1345-1370.
Přejít k původnímu zdroji...
- Lorenz, H. W. (1994), Non-Linear Dynamical Economics and Chaotic Motion. Berlin: Springer Verlag.
Přejít k původnímu zdroji...
- Perko, L. (2001), Differential Equations and Dynamical Systems. Berlin: Springer Verlag.
Přejít k původnímu zdroji...
- Phillips, A. W. (1954), "Stabilisation Policy in a Closed Economy." Economic Journal 64, pp. 290-323.
Přejít k původnímu zdroji...
- Rosser, J. B. Jr. (1999), "On the Complexities of Complex Economic Dynamics." The Journal of Economic Perspectives, Vol. 13, No. 4, pp. 169-192.
Přejít k původnímu zdroji...
- Sprott, J. C. (2003), Chaos and Time-Series Analysis. Oxford: Oxford University Press.
- Takens, F. (1985), "On the Numerical Determination of the Dimension of an Attractor." In Braaksma, B. L. J., Broer, H. W., Takens, F., eds., Dynamical Systems and Bifurcations. Lecture Notes in Math, Heidelberg: Springer Verlag.
Přejít k původnímu zdroji...
- Tinbergen, J. (1930), "Ein Schiffsbauzyklus?" in Weltwirtschaftliches Archiv, reprinted in Klaasen, L. H. et al. (1959), ed., Selected Papers, Amsterdam.
Tento článek je publikován v režimu tzv. otevřeného přístupu k vědeckým informacím (Open Access), který je distribuován pod licencí Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), která umožňuje nekomerční distribuci, reprodukci a změny, pokud je původní dílo řádně ocitováno. Není povolena distribuce, reprodukce nebo změna, která není v souladu s podmínkami této licence.