Prague Economic Papers 2010, 19(3):251-272 | DOI: 10.18267/j.pep.375

An Alternative Approach to the Dating of Business Cycle: Nonparametric Kernel Estimation

Jitka Poměnková
Faculty of Business Economics, Mendel University Brno, Zemědělská 1, 613 00 Brno, CR (pomenka@mendelu.cz).

The paper provides the methodological background for the Czech Republic business cycle dating process using an alternative approach. This approach is based on the mathematical principle of identification of extremes using estimates of derivations of time trend of the analysed time series, for which the nonparametric Gasser-Müller estimate is used. The presented methodological approach is applied on the real gross domestic product data sets, the total industry (excluding construction), the gross capital formation and the final consumption expenditure. The selected variables are taken from the national accounts system. The obtained results are compared to the widely used naive technique of business cycle dating written by Canova (1998, 1999) or Bonenkamp (2001). The presented new method specifies the identification of turning points in the business cycle dating process.

Keywords: Gasser-Müller estimate, business cycle, identification of turning points, stabilization policy
JEL classification: C14, E32

Published: January 1, 2010  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Poměnková, J. (2010). An Alternative Approach to the Dating of Business Cycle: Nonparametric Kernel Estimation. Prague Economic Papers19(3), 251-272. doi: 10.18267/j.pep.375
Download citation

References

  1. Artis, M., Marcellino, M., Proietti, T. (2004), "Characterising the Business Cycles for Accession Countries." CEPR-EABCN Conference of Business Cycle and Acceding Countries, Vienna, 2004. Go to original source...
  2. Bonenkamp, J., Jacobs, J., Kuper, G. H. (2001), Measuring Business Cycles in the Netherlands, 1815-1913: A Comparison of Business Cycle Dating Methods. SOM Research Report, No. 01C25, Systems, Organisation and Management, Groningen. University of Groningen [online].
  3. Canova, F. (1998), "De-trending and Business Cycle Facts." Journal of Monetary Economic, Vol. 41, pp. 533-540. Go to original source...
  4. Canova, F. (1999), "Does De-trending Matter for the Determination of the Reference Cycle and Selection of Turning Points?" The Economic Journal, Vol. 109, No. 452 (January 1999), pp. 126-150. Go to original source...
  5. Chiu S. T. (1991), "Some Stabilized Bandwidth Selectors for Nonparametric Regression." Annals of Statistics, 19, 1528-1546 Go to original source...
  6. Droge, B. (1994) "Some Comments on Cross-Validation." In Härdle, W., Schimek, M. G., eds., Statistical Theory and Computational Aspects of Smoothing. Austria, 1994, pp. 178-199. Go to original source...
  7. Gasser, T. L., Müller, H. G., Mammitzsch, V. (1985), "Kernels for Nonparametrics Curve Estimation." J. Royal Statistical Society B47, pp. 238-251. Go to original source...
  8. Granovsky, B. L., Müller, H. G. (1991), "Optimizing Kernel Methods: A Unifying Variational Principle." International Statistical Review. 1991, 59, 3, pp. 373-388. Go to original source...
  9. Granovsky, B. L., Müller, H. G., Pfeifer, C. (1995), "Some Remarks on Optimal Kernel Function." Statistics & Decision 13, München 1995, pp. 101-116. Go to original source...
  10. Hastie, T. J., Tibshirani, R. J. (1991), Generalized Additive Models. University of Toronto, Great Britain.
  11. Härdle, W. (1990), Applied Nonparametric Regression. Cambridge University Press, 349 p. Go to original source...
  12. Hodrick, R. J., Prescott, E. C. (1980), "Post-war U.S. Business Cycles: An Empirical Investigation." Carnegie-Mellou University, Pitsburgh, PA., 24 pp.
  13. Horová, I. (2000), Some Remarks on Kernels, Journal of Computational Analysis, Vol. 2., No. 2, 2000, pp. 253-263. Go to original source...
  14. Horová, I. (2002), "Optimization Problems Connected with Kernel Estimates," Signal Processing, Communications and Computer Science. 2002 by World Scientific and Engineering Society Press, pp. 339-334.
  15. Horová, I., Zelinka, J.. (2000), "Základy a aplikace jádrových odhadů. Analýza dat 2000/II." Moderní statistické metody, Lázně Bohdaneč, 21. - 24. 11. 2000, pp. 141-167.
  16. Kapounek, S. (2009), Estimation of the Business Cycles - Selected Methodological Problems of the Hodrick-Prescott Filter Application. Polish Journal of Environmental Studies. Vol. V, No. 6, p. 2. ISSN 1230-1485.
  17. Poměnková, J. (2005), Some Aspects of Regression Function Smoothing (1st ed.). Ostrava, PhD-thesis.
  18. Poměnková, J. (2008), "Remarks to Optimum Kernels and Boundary Optimum Kernels." Applications of Mathematics. Vol. 53, No. 4, pp. 305-317. Go to original source...
  19. Müller, H. G. (1988), "Nonparametric Regression Analysis of Longitudinal Data." Lecture Notes in Statistics 46. Springer-Verlag. Go to original source...
  20. Rice, J. (1984), "Bandwidth Choice for Nonparametric Regression." The Annals of Statistics, 12, 1215-1230, 1984. Go to original source...
  21. Wand, M. P., Jones, M. S. (1995), Kernel Smoothing (1st ed.). Chapman & Hall, London. Go to original source...
  22. Webpages: http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/[18. 3. 2009]

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.