Prague Economic Papers 2005, 14(2):163-170 | DOI: 10.18267/j.pep.260

Dynamical Agents' Strategies and the Fractal Market Hypothesis

Lukáš Vácha, Miloslav S. Vošvrda
Institute of Information Theory and Automation of the Academy of Sciences of the Czech Republic, Pod Vodárenskou věží 4, CZ - 182 08 Prague 8 (e-mail: lvacha@seznam.cz; vosvrda@utia.cas.cz).

The efficient market hypothesis (EMH) fails as a valid model of financial markets. The fractal market hypothesis (FMH) is a more general alternative way to the EMH. The FMH is formed on the following parameter space: agents' investment horizons. A financial market is more stable when a fractal character in the structures of agent's investment horizons is adopted. For computer simulations, the classical model is modified. This adjusted model shows that various frequency distributions on agents' investment horizons lead to different returns behaviour. The FMH focuses on matching of demand and supply of agents' investment horizons in the financial market. The FMH asserts that investors have different information based on temporal attributes. Since all investors in the market have different time investment horizons, the market remains stable. Our simulations of probability distributions of agents' investment horizons demonstrate that many investment horizons guarantee stability on the financial market.

Klíčová slova: efficient market hypothesis, fractal market hypothesis, agents' investment horizons, agents' trading strategies
JEL classification: C61, D84, G14

Zveřejněno: 1. leden 2005  Zobrazit citaci

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Vácha, L., & Vošvrda, M.S. (2005). Dynamical Agents' Strategies and the Fractal Market Hypothesis. Prague Economic Papers14(2), 163-170. doi: 10.18267/j.pep.260
Stáhnout citaci

Reference

  1. Brock, W. A. (2001), Growth Theory, Nonlinear Dynamics and Economic Modelling. New York: Edward Elgar.
  2. Brock, W. A., Hommes, C. H. (1997), "A Rational Route to Randomness." Econometrica, 65(5), pp. 1059-1095. Přejít k původnímu zdroji...
  3. Brock, W. A., Hommes, C. H. (1998), " Heterogeneous Beliefs and Routes to Chaos in a Simple Asset Pricing Model." Journal of Economic Dynamics and Control, 22, pp. 1235-1274. Přejít k původnímu zdroji...
  4. Chiarella, C. (1992), "The Dynamics of Speculative Behaviour." Annals of Operational Research, 37, pp. 101-123. Přejít k původnímu zdroji...
  5. Chiarella, C., He, X. (2003), "Heterogeneous Beliefs, Risk and Learning in a Simple Asset Pricing Model with a Market Maker." Macroeconomic Dynamic, 7, pp. 503-533. Přejít k původnímu zdroji...
  6. Gaunersdorfer, A. (2000), "Endogenous Fluctuations in a Simple Asset Pricing Model with Heterogeneous Agents." Journal of Economic Dynamics and Control, 24, pp. 799-831. Přejít k původnímu zdroji...
  7. Grassberger, P., Procaccia, I. (1983), "Measuring the Strangeness of Strange Attactors." Physica 9D: pp. 189-208. Přejít k původnímu zdroji...
  8. Haltiwanger, J., Waldman, M. (1985), "Rational Expectations and the Limits of Rationality: an Analysis of Heterogenity." American Economic Review, 75, pp. 326-340.
  9. Lorenz, H. W. (1993), Nonlinear Dynamical Economics and Chaotic Motion. Berlin: Springer-Verlag. Přejít k původnímu zdroji...
  10. Lucas, R. E. (1978), "Asset Prices in an Exchange Economy." Econometrica, 46, pp. 1429-1445. Přejít k původnímu zdroji...
  11. Peters, E. E. (1994), Fractal Market Analysis, Applying Chaos Theory to Investment and Economics. New York: John Wiley&Sons, inc.
  12. Schone, R. (1997), Economics Dynamics Phase Diagrams and their Economic Application. Cambridge: Cambridge University Press.
  13. Tu, P. N. V. (1992), Dynamical Systems an Introduction with Applications in Economics and Biology. Berlin: Springer-Verlag. Přejít k původnímu zdroji...
  14. Vácha, L., Vošvrda, M. (2003), "Learning in Heterogeneous Agent Model with the WOA." 6th International Conference on Applications of Mathematics and Statistics in Economy. Banská Bystrica, pp. 199-203.
  15. Vošvrda, M. (2001), "Bifurcation Routes in Financial Markets." Proceedings of the 19th International Conference Mathematical Methods in Economics 2001 Hradec Králové, pp. 199-205.
  16. Vošvrda, M., Vácha, L. (2002), "Heterogeneous Agent Model with Memory and Asset Price Behaviour." Proceedings of the 20th International Conference Mathematical Methods in Economics Ostrava, pp. 273-282.
  17. Zeeman, E. C. (1974), "The Unstable Behaviour of Stock Exchange." Journal of Mathematical Economics, 1, pp. 39-49. Přejít k původnímu zdroji...
  18. Zhou, W. X., Sornette, D. (2004), "Predictability of Large Future Changes in Major Financial Indices" (http://xxxlanlgov/PS_cache/cond-mat/pdf/0304/0304601pdf, pp.41-28).

Tento článek je publikován v režimu tzv. otevřeného přístupu k vědeckým informacím (Open Access), který je distribuován pod licencí Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), která umožňuje nekomerční distribuci, reprodukci a změny, pokud je původní dílo řádně ocitováno. Není povolena distribuce, reprodukce nebo změna, která není v souladu s podmínkami této licence.