Prague Economic Papers 2003, 12(1):68-83 | DOI: 10.18267/j.pep.207

Forecasting with leading economic indicators - a non-linear approach

Timotej Jagric
Faculty of Economics and Business, University of Maribor, Slovenia, Razlagova 14, 2000 Maribor, Slovenia (e-mail: timotej.jagric@uni-mb.si).

Leading economic indicators have a long tradition in forecasting future economic activity. Recent developments, however, suggest that there is scope for adding extensions to the methodology of forecasting major economic fluctuations. In this paper, the author tries to develop a new model, which would outperform the forecast accuracy of classical leading indicators model. The use of artificial neural networks is proposed here. For demonstration a case study for Slovene economy is included. The main finding is that, at the twelve months forecasting horizon, a stable and improved forecast accuracy could be achieved for in- and out-of-sample data.

Klíčová slova: leading economic indicators, neural network, forecasting, aggregate economic activity
JEL classification: C45, E37

Zveřejněno: 1. leden 2003  Zobrazit citaci

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Jagric, T. (2003). Forecasting with leading economic indicators - a non-linear approach. Prague Economic Papers12(1), 68-83. doi: 10.18267/j.pep.207
Stáhnout citaci

Reference

  1. Bhishop, C. M. (1995), Neural Networks for Pattern Recognition. New York: Oxford University Press.
  2. Burns, A. F., Mitchell, W. C. (1946), "Measuring Business Cycles". New York, NBER.
  3. Charemza, W. W., Deadman, D. F. (1992), New Directions in Econometric Practice: General to Specific Modelling, Cointegration and Vector Autoregression. Aldeshot: Edward Elgar.
  4. Dias, F. C. (1994), "A Composite Indicator for the Portuguese Economy". Estudios e Documentos de Trabalho, Working Papers No. 18-19.
  5. Fritsche, U., Stephan, S. (2000), "Leading Indicators of German Business Cycles: An Assessment of Properties". DIW, Discussion Paper No. 207.
  6. Gonzalez, S. (2000), Neural Networks for Macroeconomic Forecasting: A Complementary Approach to Linear Regression Models. Ottava: Department of Finance.
  7. Granger, C. W. J. (1996), "Can We Improve the Predictive Quality of Economic Forecasts?" Journal of Applied Econometrics, 11, pp. 455-473. Přejít k původnímu zdroji...
  8. Hagan, M. T., Demuth, H. B., Beale, M. H. (1996), Neural Network Design. Boston, MA: PWS Publishing.
  9. Hebb, D. O. (1949), The Organization of Behavior: A Neuropsychological Theory. New York: John Wiley & Sons.
  10. Hinton, G. E. (1987), "Learning Translation Invariant Recognition in Massively Parallel Networks", in Bakker, J. W., Nijman, A. J., Treleaven, P. C., eds., Proceedings of PARLE Conference on Parallel Architectures and Languages in Europe. Berlin: Springer Verlag. Přejít k původnímu zdroji...
  11. Hymans, S. (1973), "On the Use of Leading Indicators to Predict Cyclical Turning Points". Brookings Papers on Economic Activity, 2, pp. 339-384. Přejít k původnímu zdroji...
  12. Jaditz, T., Riddick, L. A., Sayers, C. L. (1998), "Multivariate Nonlinear Forecasting: Using Financial Information to Forecast the Real Sector." Macroeconomic Dynamics, 2, pp. 369-382. Přejít k původnímu zdroji...
  13. Jagric, T. (2001), "Money, Aggregate Economic Activity and Granger Causality Test." Our Economy, (5-6), pp. 67-89.
  14. Jagric, T. (2002), "Measuring Business Cycles." Eastern European Economics, 40, pp. 63-87. Přejít k původnímu zdroji...
  15. Lee, T. H., White, H., Granger, C. W. J. (1993). "Testing for Neglected Nonlinearity in Time Series Models." Journal of Econometrics, 56, pp. 269-290. Přejít k původnímu zdroji...
  16. Leitch, G., Tanner, J. E. (1991), "Economic Forecast Evaluation: Profits versus the Conventional Error Measures." American Economic Review, 81, pp. 581-590.
  17. Luenberger, D. G. (1984), Linear and Nonlinear Programming (Second ed.). Reading, MA: Addison-Wesley.
  18. Maasoumi, E., Khotanzad, A., Abaye, A. (1994), "Artificial Neural Networks for Some Macroeconomic Series: A First Report." Econometric Reviews, 13, pp. 105-122. Přejít k původnímu zdroji...
  19. McCulloch, W. S., Pitts, W. H. (1943), "A Logical Calculus of the Ideas Imminent in Nervous Activity." Bulletin of Mathematical Biophysics, 5, pp. 115-133. Přejít k původnímu zdroji...
  20. Meese, R. A., Rogoff, A. K. (1983), "Empirical Exchange Rate Models of the Seventies: Do They Fit Out of Sample?" Journal of International Economics, 13, pp. 3-24. Přejít k původnímu zdroji...
  21. Mezard, M., Nadal, J. P. (1989), "Learning in Feedforward Layered Networks: The Tiling Algorithm." Journal of Physics A, 22, pp. 2191-2203. Přejít k původnímu zdroji...
  22. Minsky, M., Papert, S. (1969), Perceptrons: An Introduction to Computational Geometry. Cambridge, MA: MIT Press.
  23. Nelson, C., Plosser, C. (1982), "Trends and Random Walks in Macroeconomic Time Series: Some Evidence and Implications." Journal of Monetary Economics, 10, pp. 139-162. Přejít k původnímu zdroji...
  24. Polak, E. (1971), Computational Methods in Optimization: A Unified Approach. New York: Academic Press.
  25. Refenes, A. N., Zapranis, A., Francis, G. (1994), "Stock Performance Modeling Using Neural Networks: A Comparative Study with Regression Models." Neural Networks, 7(2), pp. 375-388. Přejít k původnímu zdroji...
  26. Ripley, B. D. (1996), Pattern Recognition and Neural Networks. Cambridge: Cambridge University Press. Přejít k původnímu zdroji...
  27. Rosenblatt, F. (1962), Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Washington, D. C.: Spartan. Přejít k původnímu zdroji...
  28. Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986), "Learning Internal Representations by Error Propagation," in Rumelhart, D. E., ed., Parallel Distributed Processing: Explorations in the Microstructures of Cognition, 1: Foundations. Cambridge, MA: MIT Press. Přejít k původnímu zdroji...
  29. Statistics Canada (1999), X11ARIMA version 2000. Ottawa.
  30. Stekler, H. O. (1991), "Macroeconomic Forecast Evaluation Techniques." International Journal of Forecasting, 7, pp. 375-384. Přejít k původnímu zdroji...
  31. Stock, J. H., Watson, M. W. (1989), "New Indexes of Coincident and Leading Economic Indicators," in Blanchard, O., Fischer, S., eds., NBER Macroeconomics Annual. Cambridge, MA: MIT Press. Přejít k původnímu zdroji...
  32. Tiao, G. C., Tsay, R. S. (1994), "Some Advances in Non-linear and Adaptive Modeling in Time-series." Journal of Forecasting, 10, pp. 109-131. Přejít k původnímu zdroji...
  33. Tkacz, G. (2001), "Neural Network Forecasting of Canadian GDP Growth." International Journal of Forecasting, 17, pp. 57-69. Přejít k původnímu zdroji...

Tento článek je publikován v režimu tzv. otevřeného přístupu k vědeckým informacím (Open Access), který je distribuován pod licencí Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), která umožňuje nekomerční distribuci, reprodukci a změny, pokud je původní dílo řádně ocitováno. Není povolena distribuce, reprodukce nebo změna, která není v souladu s podmínkami této licence.