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EXCHANGE RATES FORECASTING: 
CAN JUMP MODELS COMBINED WITH 
MACROECONOMIC FUNDAMENTALS HELP?

Tomáš1Bunčák*

Abstract

Connection between macroeconomic variables and foreign exchange (FX) rates evaluated 
in the context of out-of-sample forecasting is a well-known problem in economics. We propose 
a  method that utilizes stochastic models based on jump processes (namely the normal inverse 
Gaussian and Meixner models), combines them with macroeconomic fundamentals, and using 
a  moving (rolling or recursive) regularized estimation procedure produces forecasts of FX rates. 
These are compared to benchmark models, namely the direct forecast and the Gauss model fore-
cast. Empirical out-of-sample experiments are performed on EUR/USD and USD/DKK currencies.

Keywords: exchange rates forecasting, jump processes, macroeconomic fundamentals, out-of-
sample testing, cross-validation
JEL Classification: C46, C53, F37   

1 .  Introduction

Surveying the published work, we may find a lot of evidence against usefulness of 
macroeconomic information for the prediction of foreign exchange (FX) rates. This problem 
is sometimes labelled as the exchange rate disconnect puzzle and originates from Meese 
and Rogoff (1983). In the literature, mostly they conclude that even though the standard 
macroeconomic models are able to (at least partially) describe in-sample movement of 
FX rate, however, out-of-sample forecast is rarely better than a (no-change) forecast of 
a random walk (with or without drift). There is a vast amount of literature on this topic – 
covering different methods of prediction, using various economic fundamentals, all applied 
on miscellaneous FX rates and time periods; for a good overview (and an exhaustive list 
of references) see the comprehensive study Rossi (2013) for instance. We try to provide 
a novel approach to forecasting of FX rates combining stochastic models with jumps, 
predictors based on standard macroeconomic models such as purchasing power parity, 
monetary fundamentals model, and Taylor-rule model, and techniques of regularized 
estimation with cross-validation. Although there is a literature about modelling of FX rates 
with jump models employed – Jiang (1998), Božović (2008), Busch et al. (2005), Nirei and 
Sushko (2011), Bates (1996), Nekhili et al. (2002), Maheu and McCurdy (2008) among 
others – to our knowledge, combining jump processes with macroeconomic information in 
order to predict FX rates seems to be new. Also note that we work with the infinite activity 
jump processes (namely the normal inverse Gaussian (NIG) and Meixner models), which is 
not a very commonplace practice in the literature concerning FX rates forecasting.
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Stochastic models incorporating jumps are quite appropriate for modelling of (high-
frequency) returns of financial assets (in particular FX rates), see Bunčák (2013) for 
instance. Thus once we are provided with the parameters of such a model, we are capable of 
calculating various measures describing returns of the underlying financial series, say FX 
rate. We may easily calculate drift (the mean of returns), volatility (the variance of returns), 
and other characteristics such as skewness and kurtosis as well. Of course, if we know 
exact parameters of a jump model for a future period, we would know precise estimate of 
the future FX rate. Hence there is a question whether we would be able to predict these 
parameters so that the implied forecast of FX rate would become more accurate than a direct 
forecast using the same prediction procedure.

This idea can be also viewed from another perspective. Considering time series of 
calibrated parameters of a jump model in a range of subsequent periods, we may say we 
get a kind of filtered information that might be connected with macroeconomic variables in 
a different way than the FX rate itself. Consequently, this may (or may not) provide a better 
(out-of-sample) forecast of the FX rate. Motivated by this idea, we employ several measures 
evaluating forecast accuracy to compare our method of prediction with benchmarks derived 
from a rather standard way of FX rates forecasting.

The paper is organized as follows. Subsection 2.1 introduces macroeconomic predictors 
we use. Subsection 2.2 explains the role of jump models in the prediction of FX rates 
we undertake. Next Subsection 2.3 outlines benchmark models that are compared to the 
jump models framework. Our estimation procedure is clarified in Subsection 2.4. Forecast 
evaluation criteria are stated in Subsection 2.5. Finally, empirical test results are given in 
Section 3. All is concluded in Section 4.

2.   For ecasting Framework Description

2.1  Reg ressors derived from macroeconomic models

In our modelling framework, we use predictors that are based on some of the well-known 
macroeconomic models, namely purchasing power parity, monetary fundamentals model, 
and Taylor-rule model. The basic idea of regressors construction is that each of these models 
gives an expression for a fundamental value of a chosen FX rate. Denoting logarithm of 
this value as ts  for a time t ≥ 0, we use predictors defined as t ts s  , where st = log (St)
is the logarithm of the (nominal) FX rate process St (units of home currency per one unit of 
foreign currency). Hence a predictive model might be used in the form 

 Δ  |Ä ,  0,  0t h t t h t t t ts s s a b s s t h         . 

Essentially, this is what we call a direct forecast, but we will elaborate upon this further. 
Note that these regressors will be also used for forecasting of jump model parameters, see 
Subsection 2.2. This design of predictors is not new and can be found in Engel et al. (2007) 
or Li et al. (2015), among others. Let us describe the used predictors in more detail now.

2.1.1  Purchasing po wer parity

Purchasing power parity (PPP) is a well-known concept in economics. It says that should 
two economies' purchasing powers be in parity, real exchange rate would be equal to one, 
i.e. two national price levels would be equal after currency adjustment. Expressing that with 
formulas we get 
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where r

tS  denotes the real exchange rate, Pt
* is the foreign1 price level, and Pt  the domestic 

price level. Hence, taking logarithms gives us a fundamental (logarithmic) FX rate value 
implied by PPP, namely 

    * *log log ,  0,t t t t ts P P p p t      (1)

which in turn yiel ds our first regressor 

 
1 * ,  0.t t t tx p p s t     (2)

Of course, there is a l ot of discussion about the PPP model itself, interested reader is referred 
to Rossi (2013) – as for any other regressor we introduce.

2.1.2  Monetary fundamentals

The second  of our regressors is based on monetary fundamentals. Considering a model for 
(the logarithm of) real money 

, 0,t t t tm p i y t     

Where mt is the logarithm of the nominal money supply, it denotes the nominal interest 
rate, and yt stands for the logarithm of the real output. Assuming that the same equation 
(with the same coefficients) holds for the foreign country and combining with Equation 1 
we get a fundamental FX rate of the form 

   * * * ,  0.t t t t t t ts i i y y m m t       

As one can see in Bruyn et al. (2013) for instance, this can be simplified to the basic form 
of the monetary model where η = 0 and ϕ = 1. That gives us the second predictor 

  2 * * , 0.t t t t t tx m m y y s t                              (3)

2.1.3  Taylor rule predictor

The  last predictor w e use is motivated by the (symmetric) Taylor rule. It is constructed in 
the following way. Consider a reaction function by which a central bank sets an interest rate 
policy 

 
, 0,r

r g
t t t y t i t ts
i c c s c c y c i t                            (4)

Where it is the domestic interest rate,  *r
t t t ts s p p    is the logarithm of the real exchange 

rate, πt  denotes the domestic inflation rate, yt
g is the logarithm of the domestic output gap. 

Now assume that a similar equation holds for the foreign interest rate, namely 

 * * * * * * * * * * ,  0,r g
t t t y t i t ti c c s c c y c i t            (5)

1 Unless otherwise stated, superscript * always denotes the foreign version of a variable.
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where superscript * denotes the foreign counterp arts of variables or coefficients. Note that  
st

r* = – st
r,  t ≥ 0. Recalling the well-known concept of uncovered interest rate parity we 

write 
 

* ,  0,t t t t ts s i i t      (6)

where  denotes the expectation. If we plug (4)  and (5) in (6) and assume that the coefficients 
for the domestic and foreign economy are equal (symmetric rule), we get an expression for 
the fundamental2 FX rate 

     * * *2 ,  0,r
g g

t t t y t t t t t ts
s c c y y c s p p s t          

where we have furthermore set ci = 0. Hence, in accord with our methodology, selection of 
specific values for the coefficients yields directly the regressor of the form 

      3 * * *1.5 0.1 0.1 ,  0.g g
t t t t t t t tx y y s p p t            (7)

Use of these coefficients is standard in the literature, as i s advocated in Li et al. (2015) 
or Engel et al. (2007) for instance.

2.2  The role of jump models

We want to generate FX rate forecasts using j ump models combined with macroeconomic 
fundamentals. To achieve this, we follow the next scheme:  

1. We estimate (calibrate) parameters of a selected jump model in subsequent periods 
using log-returns data.3

2. Having (multivariate) time series of the calibrated jump model parameters, we apply 
moving (rolling or recursive) window estimation to get forecasts of these parameters. 
It means that for each of the jump model parameters we have a procedure that gives us 
the parameter prediction. In this step we use the macroeconomic information.

3. Once we are provided with the predictions of the jump model parameters, we generate 
implied forecasts of the FX rate.

Let us describe these steps in more detail now. As we mentioned before, we calibrate jump 
models on high-frequency (specifically one-hour) log-returns (or simply returns) that are 
defined as Ät t tr s s   Δt where st = log(St) is the logarithm of the FX rate process St . More 
concretely, we divide any given time period [T1, T2] into smaller periods with time step 

Δt > 0 getting time division  ti  = T1 + i∆t, 2 10, ,
T Ti

t


 


.4 Then we compute log-returns 

over these time steps. Using the log-returns data, we calibrate the selected jump model 
(i.e. we estimate its parameters). This is repeated for subsequent (non-overlapping) time 
periods so we get a multivariate time series of the jump model parameters evolving in time 

2 Or here we may rather say expected.
3 Standardly, by calibration we mean selection (estimation) of parameters so that the theoretical 

distribution implied by the jump model is close to the empirical distribution of the log-returns. 
More about calibration can be found in Bunčák (2013) for instance.

4 Here any rounding is neglected for simplicity.
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(one set of the calibrated parameters for a period forms one observation of this multivariate 
time series). Summing up, the sequential calibration procedure follows these steps:  

1. We divide the whole time period at our disposal [0, T ], T > 0 into smaller non-overlapping 
periods of length h > 0, so we get intervals  , ,t hI t t h  , 0, ,t T h   .5

2. In each subperiod It,h , we estimate the jump model parameters using observations 
of log-returns over shorter periods of length 0 < ∆t h .6 So for each It,h  we have 
the calibrated parameters (of a chosen jump model) denoted as θ 1 T

, , ,( , , )N
t h t h t h   ,

where N is the number of parameters of the jump model; T denotes transposition 
(so vectors are columns standardly).

3. We end with a (multivariate) time series of parameters θt,h , t = 0, …,  T – h.

Next we need to specify techniques used for the jump model parameters forecasting. We 
try to model each of the jump model parameters individually. There are, say, two groups of 
jump model parameters. One is the group that determines drift of the underlying stochastic 
process (i.e. location or shape parameters), the other is the group that influences volatility of 
the model process (i.e. scale parameters). We model the former using the information from 
the macroeconomic variables, the latter without the information using an autoregressive 
(AR) model only.

Hence we split the set of parameter indices into R
∩

A  1, , N  , where R denotes 
indices predicted by regression, A by an AR model. Let us first focus on the group labelled 
by R. Collecting the regressors (2), (3), and (7), we create a vector 1 2 3 T( , , )t t t tx x xx , t ≥ 0. 
Then we model each ,

i
t h , i   R by 

 ,
i
t h i  ψT ,  0, , ,i t t t T h   x  (8)

whe re κi   ψi 3 are estimated employing regularization as we will describe below. 
Since in (8) we use multiple macroeconomic predictors at once, we may call it a kitchen-
sink regression as in Li et al. (2015) for instance. Considering the AR modelled parameters, 
for any ,

j
t h , j   A there is 

 , , ,  , , ,j j
t h j j t h h t t h T h           (9)

where γj   and  δj   represent parameters of the simple AR(1) model. Coefficients of 
these models are estimated in moving windows as we will describe later. Note that by εt 
we denote an error term (residual) which is assumed to be a stochastic process with no 
serial correlation; and it is a different instance for each of the equations we state henceforth 
(even though we use the same symbol everywhere – for the simplicity of presentation). 
We tested for autocorrelation in all of the error terms that appear in our modelling and it 
seems to be no issue. In (8) or (9) we take no further assumptions on the residuals since we 
do not make any statistical inference based on these residuals directly and the estimation 
techniques we apply do not require any special assumptions here. However, should some 
additional assumptions (e.g. normality) be relevant at some point (such as the application 

5 Time t iterate with steps of length h; any rounding neglected for simplicity, overlapping in boundary 
points likewise.

6 Step Δt shall be chosen so that we have enough log-return observations to calibrate the selected 
jump model in any period of length h.
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of the Evans-Lyons test later), we apply a few procedures (such as Q-Q plots or pertinent 
statistical tests) to inquire about their validity.

Finally, once we have estimated parameters of a jump model, we need to specify a way 
in which FX rate forecast is created. In fact, we try to predict log-return of an FX rate over 
It,h  at time t, so h is the forecast horizon. Simply, FX rate forecasts are calculated as the 
mean of the jump model distribution with the corresponding estimated parameters. Let us 
specify this for our selected jump models.

2.2.1  NIG model

This model was  introduced to finance in Barndorff-Nielsen (1997). It is a member of the 
class of generalized hyperbolic models, i.e. models based on processes constructed by 
Brownian motion subordination with the generalized inverse Gaussian subordinator. For 
more information about this class see Cont and Tankov (2003), Subsection 4.6.

NIG model has four parameters, as it common we denote them μ  , α > 0, δ > 0 and 
0    . Parameter α adjusts tail behaviour, that is steepness of the NIG distribution – the 
larger α is, the lighter are the tails of the distribution. Parameter β controls the skewness 
of the distribution; β < 0 produces left-skewed densities, β > 0 right-skewed. Standardly, 
μ is the location (or drift) parameter. Finally, δ represents a measure of the volatility of 
returns; higher δ leads to more volatile returns. Considering these properties, we take 
μ and β as the directional parameters modelled by the regression procedure (8), and δ, σ 
as the volatility parameters modelled by the AR model (9). Although we link only μ and β
to the macroeconomic predictors, we will see that the other parameters influence the FX 
rate log-return estimate as well.

This model provides a closed-form (probability) density for the returns, what allows 
us to use maximum likelihood estimation (MLE) for calibration. The density is of the form 

     
 2 2 2

1

, 2 2 2

( ) ( )
exp ,   ,

( ) ( )
r t

K t x ttf x t x t x
t x t

     
  



   
     

   
  

Where Ku denotes the modified Bessel function of the second kind and index u, see 
Abramowitz and Stegun (1972) for example. Consider we have estimated parameters 
corresponding to log-returns over a unit of time, denote them θ T( , , , )    . Then using 
the NIG model distribution of returns over any time Δt > 0 (by the infinite divisibility of the 
Lévy processes) we have 

      
2

| | 3, ,     , var ,r t t t r t t tt s t t s t 
  

 
           

 
     (10)

for the mean r  and the variance r  of retur ns, namely; 2 2    . So if we have 
estimates of parameters T

, , , , ,( , ,ˆ ˆ )ˆ ˆ,ˆt h t h t h t h t h     for a future period  , ,t hI t t h   at 
time t, we produce the estimate of FX rate log-return over this period by 

  | ,
ˆˆ ˆ , ,t h t t h t r t hs s s h       (11)

where r  is from (10). Application of the for mula for the variance will be described 
later (as a part of a simple out-of-sample trading test we carry out). The calibrated model 
parameters are illustrated in Figure 1.
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2.2.2  Meixner model

Figure 1 |  NIG Model Parameters Corresponding to Hourly Log-Returns Fitted in Monthly Periods 

(EUR/USD rate, period 01/2004 – 12/2013)

Source: own computation

Another example of the infinite activity Lévy m odels is the Meixner (MXN) model which 
was introduced to finance in Schoutens and Teugels (1998). This model also provides 
a density for the returns in a closed form, so we exploit this and use MLE for the calibration 
again. It has four parameters denoted as α > 0 ,      , δ > 0, and μ  .7 Note that 
μ is the drift (or the location of returns) parameter, α controls scale of returns, β and δ 
determine shape of the distribution – skewness and kurtosis in particular. The MXN model 
density is in the shape 

7 Although we use the same notation as for the NIG model parameters, this shall not be confusing 
in our text and it emphasizes that the role of some parameters is comparable for both of the models.

Parameter: α

Parameter: μ

Parameter: β

     Parameter: δ
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    
 

   
22

,
(2cos / 2 )

exp ,   ,
2 2

t

r t
x t i x t

f x t x
t

   


   





      
       

     
  

where Γ denotes the gamma function – see Abramowitz and Stegun (1972) if needed. 
The mean and the variance of the MXN model FX rate returns are given by 

       
2

, tan / 2 ,     , ,
cos 1r rt t t t   


      


     (12)

where again θ T( , , , )    . For this model, μ and β are modelled with the assistan ce 
of macroeconomic information by (8), α and δ with the AR model (9). Analogously to the 
NIG case, we predict by (11) with r  from (12). MXN parameters evolving in time are 
demonstrated in Figure 2.

Figure 2  |  MXN Model Parameters Corresponding to Hourly Log-Returns Fitted in Monthly Periods 

(EUR/USD rate, period 01/2004 – 12/2013) 

  

Source: own computation 

Parameter: α

     Parameter: δ

   Parameter: β

     Parameter: μ
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2.3  Benchmarks

2.3.1  Gauss model prediction

To get a benchmark, we follow the same procedure as for the jump processes but with 
returns modelled with the usage of the (continuous) Gauss (normal) distribution – i.e. 
the geometric Brownian motion model. For this model we have θ = (μ,σ)T where μ   
denotes the mean of the fitted log-returns and σ > 0 represents the standard deviation. Since 

 2
| ~ ,t t ts t t     we have 

     2, ,     , .r rt t t t           (13)

The model parameters are calibrated straightforwardly by the well-known MLE 
formulas (in fact the sample mean and sample variance). Parameter μ is predicted 
using the economic predictors (8) and forecast of σ is generated by the AR process (9).
Projection of the FX rate return is gained by (11) with r  from (13) plugged in.

2.3.2  Direct forecast

As was outlined in Subsection 2.1, in order to get a comparison with the jump model 
prediction, we also provide results for a direct FX rate returns forecast. That means 
modelling the log-returns directly by 

 Δ T
|Ä ,  0, , .t h t t h t t ts s s a t T h        b x  (14)

Estimation of the coefficients (α  , b  3 ) runs in the same way as for the 
regression model (8) of the jump model parameters – employing the regularized moving 
window estimation. This procedure is described in the next part.

2.4  Moving regularized estimation with cross-validation

Considering out-of-sample forecasting, the procedure o f rolling or recursive regression 
estimation is not new. For example, it has been used in Li et al. (2015) and Rossi (2013) 
states many other references where one can find this method in a certain form. We follow 
a process which is very close to Li et al. (2015) and consists of these steps:  

1. Consider we have data corresponding to a time period [0, T], T > 0. We choose 
a point in time from which we start the procedure, say τ   [0, T – h]. We iterate over 
t = τ, ..., T – h with a chosen time step h > 0.

2. For a step t, estimate coefficients of (8), (9), and (14) using data in [0, t] (recursive 
version) or [t – τ, t] (rolling window version).

3. With the estimated coefficients, we produce forecasts of ,t̂ h  with the jump model 
derived FX rate prediction (11), then the Gauss model prediction, and also the direct 
forecast given by (14).

4. We keep the predicted FX rates and continue with t :=  t + h from step 2. If t = T – h, 
cease the procedure   .
Of course, crucial is the second step in which we estimate coefficients of the models. 

Here we employ regularized estimators given by the so-called elastic net procedure, see 
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Zou and Hastie (2005) for instance. The idea is that regularized estimators should identify 
the important predictors and have lower predictive errors than ordinary least squares 
estimates. Hence for the model (8) the estimated coefficients (using the data in period 
[0, t]) are given as a solution to 

  T 2
,, 0

min ( )
i i

t h
i
s h i i s i

s

h P
t  

  




 
   

 
 x    (15)

w here λ ≥ 0 is a chosen regularization parameter and Pω(ψi) is the penalization term 
defined as 

    1iP   || i ||2
2  + ω || ψi ||1 = 

3

1j


 ((1– ω) (ψi
j )2 + ω |ψi

j|), ω   [0,1]. (16)

Note th at for ω = 0 we get the so-called ridge regression and for ω = 1 we have the lasso 
estimator. It is clear that using this procedure, estimated coefficients depend on the choice 
of the regularization parameter λ. It is not known how to choose this parameter a priori, 
however, we may help ourselves with the technique of cross-validation. So we divide the 
fitting data period (say [0, t]) into k folds of the same length and follow these steps:  

1. One fold is selected as out-of-sample period, the rest as in-sample.
2. For a given λ ≥ 0 , we get the regularized elastic-net estimates of the model coefficients 

using the in-sample data.
3. Using the coefficients from the previous step, we produce model predicted values of 

the dependent variable in the out-of-sample fold and calculate the mean squared error 
(MSE).

4. Steps 1 – 3 are repeated for all folds so that finally we get the MSE over all out-of-
sample folds for a given λ. The division to folds may be also randomly rearranged and 
the process repeated, so the MSE is then also calculated over these repetitions.

5. We reiterate steps 1–4 for a chosen range of regularization parameters [λmin, λmax]. Range 
is selected in such a way that we set     max max ;  1, 2,3 :   0,  0j

ij          
and then min max0.0001  .

Hence we have a function MSECV (λ) that gives the cross-validation MSE over all (out-
of-sample) folds (and division repetitions) for a given λ. Then we choose the “best” λ as 

  * cv

0
arg min MSE


 


  (17)

Fi nally, we estimate the coefficients κi and ψi corresponding to λ* using the whole data 
period [0, t] and these are the coefficients we use at time iteration t to produce the estimate 
of θt,

i
h, i   R. The procedure runs similarly for the rolling window version, but we take 

[t  – τ, t] instead of [0, t]. For a comparison we also propose an alternative way of λ selection, 
concretely 
     * max ;  1, 2,3 :   0,  0 ,j

ij          (18) 

i.e. maximal pen alization such that all predictors have still some non-zero impact. Note 
that the whole procedure is conducted at each step when the prediction of jump model 
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parameters and FX rates is produced. Although (15) and (16) are (for brevity) formulated 
only for the estimation of jump model regression coefficients of (8), the same procedure 
is used for the Gauss model and for the direct forecast (14).

Lastly, let us note that the AR model (9) coefficients are estimated at each step (with 
the available information) using ordinary least squares with no regularization or cross-
validation.

2.5  Forecast evaluation crite ria

We employ several measures to evaluate forecast accuracy and compare different prediction 
methods, namely forecast of the jump model framework and the benchmark models. First, 
there is a simple out-of-sample MSE calculated as  

 oos 2 2MSE ( ) (ˆ ˆ )
T h T h

t h t ht h t t h t
t t

h hs s s s
T T  

 

  
 

     
    (19)

for an out-of-sample  (OOS) period [τ, T]. Standard benchmark for FX rates forecasting is 
the random walk (RW) model (without drift), i.e. no-change forecast rw

t̂ h ts s  , t = τ, ..., T – h.

This yields MSE of the form oos
rwMSE  = 

T h

t

h
T 



  (st+h – st)
2 . Thus we may calculate the OOS 

coefficient of determination defined by 

 
oos

2
oos oos

rw

MSE1 ,
MSE

R    (20)

so we see that values greate r than zero indicate more accurate prediction than the RW 
model, and vice versa. Furthermore, we also state other measures of accuracy such as the 
percentage of correct forecast sign and the mean bet return (per forecast period). The 
former is clear, the latter is given by 

  |ˆsign
T h

t h t
t h t

t t

S Sh s
T S










   (21)

which shall be compared with the  mean FX rate return 
T h

t h t

t t

S Sh
T S







  . We also make 

use of a paired t-test to test against the alternative that the mean bet return is greater than 
the mean return of FX rate (data comprise of individual observations of the corresponding 
simple returns with/without the predicted sign adjustment sampled with frequency h over 
the whole OOS test period).

Apart from these common measures of accuracy, we also use statistical tests to decide 
whether a forecast beats the RW benchmark or not. Firstly, we work with the Evans-Lyons 
(EL) test that is mentioned in Evans and Lyons (2005) for instance. The idea of the test is 
straightforward. It is based on regression of the forecasts on the realized values of returns, i.e. 

 Δ |Ä t̂ h ts   = |t h t ts      

The null hypothesis is that st follows a RW, so the correct forecast is Δ |Ä t̂ h ts   = 0. Therefore 
under the null, forecast Δ |Ä t̂ h ts   shall differ from zero only due to sampling error and
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should not be correlated with Δst t h t  since it depends only on the information up to time t. 
This means we test for the significance of the φ coefficient.8

The second test we apply is the so-called Clark-West (CW) test, see Clark and West 
(2006). Essentially, CW tests the same hypothesis as the EL test, namely that the returns 
follow a RW (and therefore have no connection with the fundamentals). In more detail, they 
test the null β = 0 for the model Δ T

|Ä t h t t ts   x . They calculate out-of-sample MSE for 
the RW model, denote it 

 2
1 žÄˆ

T h

t

h
T 









 (Δst h t )2 

and its counterpart for the model using predictors 

 2 T 2
2 |

ˆˆ ( ) ,
T h

t h t t t
t

h s
T 









  
  x  

where ˆ
t t are the estimates of coefficients using information up to time t (rolling or recursive 

estimation). Defining 2 2 T 2
1 2

ˆ ˆ ˆ ˆ( )
T h

t t
t

h
T 

 






 
    

 x   and T 2
|

4 ˆ(ˆ )
T h

t h t t t
t

hV s
T 






 
  x , 

Clark and West show that 

 
T
hV


 

has asymptotically standard normal distribution  0,1  under the null hypothesis.9 In Clark 
and West (2006) there is more information about the test and its accuracy; also the case with 
serial correlation is treated there (overlapping forecast periods), although we do not need 
it since we have forecast horizon equal to the sampling period. Note that the test can by 
straightforwardly applied to the direct forecast case, for the jump models and the Gauss 
model benchmark we may consider that xt = Δ |Ä t̂ h ts   and ˆ 1t  .

The last result connected with prediction evaluation we state is a simple trading test 
scheme. It consists of a basic betting on the FX rate returns according to the Kelly criterion10 
using the predicted mean and variance of the jump model forecast framework. Now we 
explain what Kelly criterion bet means in essence. Let us assume we want to maximize 
expected logarithmic11 value of our portfolio in a bet on the FX rate return. To determine 
a fraction of our wealth W we want to bet we solve 

   |max log 1 t h tc
W c s    (22)

Using the Taylor expansion we write  
2

|
| |

( )
log 1

2
t h t

t h t t h t

c s
c s c s 

 


     . Hence if we 

use thi s for the approximation of the objective function in (22) and take the derivative with 
respect to c we get the (heuristically) optimal 

8 Note that residuals of the EL test (auxiliary) model are auto-correlated by defi nition. Hence we use 
the well-known quasi-differencing technique to overcome this problem.

9 Variables without hat are the “true” variables whose estimates are given by the stated hat variables.
10 Introduced in Kelly (1956).
11 The logarithm is in the role of a utility function.

max
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 

 
 

|*

|

,
,var

t h t r

rt h t

s h
c

hs








 



 


   (23)

where we have neglected 2
( | )( ) 0.t h ts    Recalling (10) and (12) , if we have parameters 

of the jump model predicted, we know what ratio of our wealth we want to bet; analogously 
for the Gauss model benchmark using (13). Naturally, the trading test is not conducted for 
the direct forecast. Note that short bets are allowed and leverage might be used (these are 
realistic assumptions for the FX futures markets for instance). The bet wealth W remains the 
same for each bet we make (so it is possible to go in debt – negative bankroll).

3.  Empirical Test Results

3.1  Used data

As FX rate time series, we use spot  FX rate data with a one hour g ranularity provided by 
a Swiss FX broker. The test is conducted on EUR/USD and USD/DKK currency pairs.12 For 
both pairs we have data for the period 01/2004–12/2013. Furthermore, we need the economic 
data for the calculation of predictors. All economic indicators are gathered in a monthly 
frequency. For price levels we use relative consumer price indices (CPI) provided by the 
OECD statistics library. As the money supply we take the monetary aggregate M1, again 
from the OECD data. As a proxy for the output we use the index of industrial production 
(IPI) since it is released on a monthly basis, source is the OECD. Potential output for the 
output gap is calculated using the one-sided Hodrick-Prescott filter, see Stock and Watson 
(1999). This maintains that predictors do not look to the future. Inflation is calculated as 
a yearly log-return of the CPI.

3.2  Out-of-sample performance comparison

Here we give results of our OOS test fra mework described in Subsection 2.4. Our main 
goal is to compare prediction using the jump models with the benchmarks of the direct 
forecast and the Gauss model prediction applying the criteria stated in Subsection 2.5. The 
test setting is following. We start the OOS test in the middle of the period for which we 

have data, i.e. 
2
T  . This means we have a five-year-long OOS period 01/2009 – 12/2013. 

Our forecast horizon h is set to one month while the time step Δt for log-returns used to fit 
jump models is one hour. There are four versions of the results that differ in the type of the 
moving estimation (rolling or recursive) and in the way by which regularization parameter λ 
is chosen, recall (17) and (18). The parameter of the elastic-net penalization term (16) is set 
to ω = 0.5. Number of folds in cross-validation is set to 6 and number of the cross-validation 
repetitions to 20. Note that parameter forecasts produced by the AR model (9) are cut-offed 
by the 90th percentile of the previously13 observed values since we want to avoid extremal 
predictions (and high volatility parameters may lead to such predictions since they escalate 
the influence of skewness parameters on the prediction).

12  The home currency is the second one stated for the pair.
13  Using no information from the future.
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Table 1 gives the performance results for EUR/USD, Table 2 for USD/DKK. Measures 
stated in the tables are as follows: %CS is the percentage of correct forecast sign, 2

oosR  is 
defined in (20), MBR denotes the mean bet return introduced in (21), CW labels CW test 
p-value, EL corresponding EL test p-value, T denotes p-value of a paired t-test of the mean 
bet return significance, and finally TTR is an acronym for the (annualized) trade test return 
(of the simple Kelly bet trading scheme outlined in Subsection 2.5). Note that variables 

2
oosR , MBR, and TTR are given in percent (i.e. multiplied by 100). MBR can be compared 

to the mean FX rate (per period) return denoted MFXR (also given in per cent) and stated 
below each of the tables.

Considering EUR/USD results, we see that jump models perform fairly better. In 
majority of the cases, statistical tests show they are significantly better than the RW model. 
For the direct forecast and the Gauss model, this happens to be true only for the case where 

*  is selected by (18), especially for the rolling window regression. TTR is always higher 
for the jump models than for the continuous Gauss model. However, we may also see 
that good 2

oosR  does not always correspond with a good MBR or %CS. MBR (or, more 
accurately, the true mean estimated by this sample mean) seems to be significantly higher 
than MFXR only for the rolling window estimation with *  gained by (18).

Table 1  |  OOS Test Results for EUR/USD

Test Type Model %CS R2

OOS MBR CW EL T TTR

Recursive
λ*

NIG 57.89 6.63 0.55 0.053* 0.028** 0.199 44.63

MXN 52.63 9.25 0.29 0.039** 0.014** 0.312 51.48

Gauss 49.12 −0.54 −0.21 0.827 0.795 0.579 8.34

Direct 45.61 0.13 −0.01 0.573 0.558 0.470 NA

Recursive
*  

NIG 54.38 9.82 0.77 0.039** 0.015** 0.124 58.92

MXN 49.12 8.99 0.07 0.051* 0.013** 0.422 52.40

Gauss 59.64 4.02 0.84 0.044** 0.007*** 0.105 26.87

Direct 54.38 3.77 0.66 0.095* 0.069* 0.159 NA

Rolling
λ* 

NIG 59.64 4.42 0.63 0.122 0.088* 0.169 37.67

MXN 57.89 11.88 0.60 0.019** 0.004*** 0.178 57.33

Gauss 45.61 −9.47 −0.01 0.998 0.980 0.470 −5.47

Direct 42.10 −14.76 0.22 0.831 0.832 0.346 NA

Rolling
*  

NIG 54.38 10.48 0.90 0.030** 0.010*** 0.090* 52.72

MXN 50.87 8.43 0.39 0.059* 0.026** 0.264 45.40

Gauss 61.40 5.22 1.10 0.021** 0.006*** 0.052* 33.25

Direct 61.40 7.17 1.31 0.008*** 0.004*** 0.026** NA

Note: Numbers' Superscripts ***, **, and * denote rejection of the null hypothesis at the level of significan-
ce 0.01, 0.05, and 0.1, respectively; MFXR = –0.06  

Source: own computation 



O
N

L
IN

E
 F

IR
S

T
O

N
L

IN
E

 F
IR

S
T

PRAGUE ECONOMIC PAPERS 15

For USD/DKK we observe that 2
oosR  of the jump models are lower than in the 

EUR/USD case. Even though statistical tests are not so persuasive for this currency, we see 
that jump models still perform somewhat better than the direct forecast or the Gauss model 
(no setting rejects the RW null for any of the benchmark models). The Meixner model 
works well for almost all of the test settings, but delivers a rather bad performance for the 
rolling window regression with λ* selected by Equation 17, though this setting is the worst 
for the other models as well.

Example of the NIG model prediction and the direct forecast of log-returns is depicted 
in Figure 3. The MXN model forecast and the direct forecast are compared in Figure 4. 
Prediction of the NIG model parameters is illustrated in Figure 5, analogous for the MXN 
model in Figure 6.

Table 2  |  OOS Test Results for USD/DKK 

Test Type Model %CS R2

OOS MBR CW EL T TTR

Recursive
λ*

NIG 54.38 3.01 0.54 0.163 0.200 0.328 32.49

MXN 63.15 6.63 1.24 0.033** 0.050** 0.079* 42.56

Gauss 45.61 −0.72 0.09 0.786 0.817 0.564 6.53

Direct 45.61 0.41 0.13 0.329 0.429 0.545 NA

Recursive
*  

NIG 61.40 4.78 0.78 0.162 0.085* 0.222 50.27

MXN 54.38 8.18 0.90 0.030** 0.026** 0.175 49.87

Gauss 61.40 2.37 0.81 0.157 0.105 0.209 18.49

Direct 59.64 2.00 0.72 0.283 0.255 0.245 NA

Rolling
λ*

NIG 52.63 0.76 −0.08 0.346 0.413 0.656 27.91

MXN 57.89 −18.74 0.74 0.525 0.499 0.238 −65.33

Gauss 52.63 −1.47 0.12 0.475 0.508 0.552 27.48

Direct 54.38 −2.84 0.63 0.371 0.443 0.285 NA

Rolling

 
*

NIG 59.64 5.90 0.71 0.142 0.058* 0.250 50.06

MXN 59.64 8.15 1.24 0.046** 0.023** 0.079* 45.57

Gauss 61.40 2.49 0.68 0.173 0.144 0.265 20.61

Direct 61.40 3.67 0.74 0.114 0.114 0.238 NA

Note: Numbers' superscripts ***, **, and * denote rejection of the null hypothesis at the level of significance 
0.01, 0.05, and 0.1, respectively; MFXR = 0.22 

Source: own computation 
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Figure 3  |  Log-Returns Forecast Comparison – NIG versus Direct Forecast 

Note: EUR/USD rate, OOS period 01/2009–12/2013, rolling window estimation with * selected by (18)

Source: own computation 

Figure 4  |  Log-Returns Forecast Comparison – MXN versus Direct Forecast 

  

Note: EUR/USD rate, OOS period 01/2009–12/2013, rolling window estimation with λ*selected by (17)   

Source: own computation 
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Figure 5  |  NIG Model Predicted (dashed, plus marker) versus Observed (solid, circle marker) 

Parameters 

  

Note: EUR/USD rate, OOS period 01/2009–12/2013, rolling window estimation with * selected by (18) 

Source: own computation 
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Figure 6  |  MXN Model Predicted (dashed, plus marker) versus Observed (solid, circle marker) 

Parameters 

 

Note: EUR/USD rate, OOS period 01/2009–12/2013, rolling window estimation with λ* selected by (17)   

Source: own computation 
 

4.  Concluding Rema rks

We showed a way how stochastic models based on jump processes can be combined with 
macroeconomic fundamentals in order to predict FX rates. The results suggest that although 
there is a sign of forecast accuracy improvement (over the direct forecast and the Gauss 
benchmark models), it is not unequivocal. We see that performance hinges on a chosen 
evaluation measure and a selected test setting. It is also difficult to find a robust prediction 
approach for different currency pairs since we observe that performance changes if we move 
from one pair to another, ceteris paribus. This unstability of results is a known fact (see 
Rossi (2013) for instance) and it underscores the problem of describing a robust connection 
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between FX rates and macroeconomic variables. However, we hope we have exemplified 
a new approach to this problem that might be developed further and help in clarification 
of the exchange rate disconnect puzzle eventually. Generally, to choose the best modelling 
approach is a difficult question in essence. Perhaps it depends on a goal for which one uses 
the prediction. For example, if you are concerned with the direction of prediction only, 
then you should look on the percentage of correct forecast sign or MBR (compared with 
MFXR). If you also want to scale your bet on the FX rate, then TTR might be an appropriate 
criterion. If you want to compare the prediction with the RW model, then you may choose 

2
oosR and the results of employed statistical tests. Either way, one could perhaps say that 

MXN model with the rolling estimation and minimal MSE λ* is the best choice for EUR/
USD, or that MXN model with the rolling estimation and the “least non-zero-all influence” 

* is the best alternative for USD/DKK.
There are multiple options of modification and extension of our research. First, 

different definitions and sets of macroeconomic fundamentals may be chosen (e.g. funda- 
mentals based on interest rate parity or forward FX rates). However, one has to realize 
that simple addition of predictors does not have to improve out-of-sample performance. 
Second, methods used for the prediction of jump model parameters may be altered. We 
use the fundamental linear model which is made more robust for OOS performance by 
regularization, but other choices such as non-linear models, panel models, or artificial 
neural networks may be considered. Likewise, a different (than AR) model may be used 
for the volatility parameters, although these parameters are less crucial for the forecast sign 
determination. Lastly, of course, tests might be conducted on different data sets (periods) 
and for other currencies. Indeed, longer data examples would be interesting, but it is not that 
simple to acquire a longer period of high-frequency14 FX rate time series.
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