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THE SOURCES OF THE TOTAL FACTOR PRODUCTIVITY 
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Abstract:
The Lithuanian agricultural sector still features the processes of land reform, farm structure 
development, and modernisation. Accordingly, there is a  need to utilise the benchmarking 
techniques in order to fathom the underlying trends and sources of ei  ciency and productivity. 
This paper therefore aims at analysing the productive ei  ciency and the total factor productivity in 
the Lithuanian family farms. The research is based on the Farm Accountancy Network Data covering 
the period of 2004–2009. The Färe-Primont Indices were employed to estimate and decompose 
the total factor productivity changes. Furthermore, the stochastic kernels were applied to analyse 
the distributions of the ei  ciency scores along with the econometric analysis which aimed at 
revealing the relationships of the environmental variables and the ei  ciency scores. The results 
do indicate that the technical ei  ciency was a decisive factor causing decrease in TFP ei  ciency 
for crop and mixed farms. Meanwhile, the scale ei  ciency constituted a serious problem for mixed 
farms. Indeed, these farms were the smallest ones if compared to the remaining farming types. 
Finally, the mix ei  ciency was low for all farming types indicating the need for implementation of 
certain farming practices allowing for optimisation of the input-mix. 
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1.  Introduction

Being the primary economic sector, the agricultural sector rewards analysis of the 
productive effi ciency therein. Indeed, increase in effi ciency and productivity there leads 
to release of the production factors, which can thus be employed in other economic acti- 
vities rendering higher value added (Nauges et al., 2011; Samarajeewa et al., 2012). In 
addition, the public support allocated to farmers, training programmes etc. induce the 
need for assessment of changes in agricultural effi ciency. Besides effi ciency, the total 
factor productivity is an important measure describing farm ability to transform the inputs 
into certain outputs and thus the overall shifts in the production frontier (Fulginiti and 
Perrin, 1997; Coelli and Rao, 2005). 

One of the most elaborated measures for effi ciency is data envelopment analy-
sis (DEA), see, for instance, studies by Murillo-Zamorano (2004), Knežević et al. 

(2011), Borůvková and Kuncová (2012), Votápková and Žák (2013), Zelenyuk (2012). 
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Accordingly, various studies employed DEA for effi ciency and productivity analysis in agri-
culture (Alvares, Arias, 2004; Gorton, Davidova, 2004; Douarin, Latruffe, 2011; Bojnec, 
Latruffe, 2011). However, effi ciency estimates are not enough to identify the underlying 
trends of productivity. Therefore, the productivity indices are employed to measure changes 
in the total factor productivity (Mahlberg et al., 2011; Sufi an, 2011). Furthermore, the DEA 
is suitable for providing distance function estimates which are the essential components 
of the productivity indices. Among the well-established indices of Malmquist, Luenber-
ger, Hicks-Moorsteen, the Färe-Primont Index offers some new features for the production 
analysis. Recently, O’Donnell (2011b) developed the package DPIN which facilitates the 
computations of the latter indices. Rahman and Salim (2013) employed the Färe-Primont 
Index for analysis of the agricultural productivity and effi ciency.

The Lithuanian agricultural sector, like other ones operating in the transitional econo-
mies, still features the processes of land reform, farm structure development, and moder-
nisation. Accordingly, there is a need to utilise the benchmarking techniques in order 
to fathom the underlying trends and sources of effi ciency and productivity. This paper 
therefore aims at analysing the productive effi ciency and the total factor productivity in 
the Lithuanian family farms. The research is based on the Farm Accountancy Network 
Data covering the period of 2004–2009. The package DPIN was employed to implement 
the Färe-Primont Indices. Furthermore, the stochastic kernels were applied to analyse the 
distributions of the effi ciency scores along with the econometric analysis which aimed at 
revealing the relationships of the environmental variables and the effi ciency scores. 

The paper is organised in the following manner: Sections 2–4 discuss the preliminaries 
to the Färe-Primont Indices based on DEA. Section 5 presents the data used. Results of 
the empirical analysis are presented in Section 6.

2.  The Measures of Productivity and Ei  ciency

Productivity is generally defi ned as a ratio of output over input (Färe et al., 2008). 
However, this principle becomes a more complex one in the presence of multi-input and/
or multi-output technology. Let there are K decision making units (DMUs) observed 
during T time periods with each using inputs  1 2, , , 't t t t

k k k mkx x x x  and producing 
outputs  1 2, , , 't t t t

k k k nky y y y , where k = 1, 2, ..., K is a DMU Index, t = 1, 2, ..., T 

denotes a respective time period, and m and n are the numbers of inputs and outputs, 
respectively. As O’Donnell (2008, 2012) put it, the total factor productivity (TFP)1 of 
a DMU is then defi ned as TFP

kt
 = Y

kt  
/ X

kt
, where Y

kt
 ≡ Y(yt

k 
) is an aggregate output, 

X
kt
 ≡ X(xt

k 
) is an aggregate input, and Y(.) and Y(.) are non-negative non-decreasing 

linearly-homogeneous aggregator functions, respectively. One can further compute the 
index comparing the TFP of DMU k in period t with the TFP of DMU l in period s:

 
,

,
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TFP Y X X X X
    , (1)

where Y
ls,kt

 ≡ Y
kt
 / Y

ls  
and X

ls,kt
 ≡ X

kt
 / X

ls
 are output and input quantity indices, respectively. 

Indeed, Equation 1 measures the growth in TFP as a measure of output growth divided by 
a measure of input growth (O’Donnell, 2011a). 

1 Indeed, one can also use the term multi-factor productivity instead of TFP. This might be more 
relevant in the sense that an analysis might not cover all factors of production.
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If input and output prices are known, the aggregate quantities can be computed by 
employing Paasche, Laspeyres, Fisher, Tornqvist Indices. Otherwise, Malmquist, and 
Hicks-Moorsteen Indices relying on distance functions can be employed. However, all 
of these fail the transitivity test and thus cannot be used for multi-temporal and multi-
lateral comparisons (O’Donnell, 2011a). Meanwhile, Lowe, Färe-Primont, and geometric 
Young Indices are suitable for such comparisons. Färe-Primont Index relies on distance 
functions and does not require price information. Indeed, it relies on non-linear weighting 
functions and normalised shadow (or support) prices (O’Donnell, 2011a).  

The change in TFP defi ned in Equation 1 can be further analysed by decomposing 
it into certain terms describing effi ciency and productivity changes. It was O’Donnell 
(2008) who argued that a TFP Index can be decomposed into the two terms describing 
TFP effi ciency (TFPE) change and technology change (TC). Specifi cally, the TFPE meas-
ures the difference between an observed TFP and maximal TFP related to the underlying 
technology. In case of DMU k in period t we have:

 TFPE
kt
 = TFP

kt  
/ TFP

t

*, (2)

where TFP
t

* = m
k
ax TFP

kt
 denotes the maximal TFP possible for period t. Similarly, the 

following equation holds for DMU l in period s:

 TFPE
is
 = TFP

ls  
/ TFP

s

*. (3)

Thus, the change in TFPE catches the change in DMU’s performance (effi ciency 
change – EC), whereas the TC accounts for change in the maximal TFP. The TFP change 
(cf. Equation 1) then decomposes as:

 
*

, *
kt t kt

ls kt

ls l
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C E

s
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TFP TFP TFPE

     
   

. (4)

The EC term in Equation 4 can be further decomposed into measures of scale effi -
ciency change (SEC) and mix effi ciency change (MEC). The concept of the mix effi ciency 
was introduced by O’Donnell (2008). Whereas scale effi ciency is related to economies of 
scale, mix effi ciency is related to economies of scope. The difference between allocative 
effi ciency and mix effi ciency lies in the fact that the former is a value concept (i.e. cost, 
revenue, profi t), and the latter one is a productivity (quantity) concept. All in all, mix effi -
ciency indicates possible improvement in productivity due to changes in input structure. 

The following Figure 1 depicts the concept of the mix effi ciency in the input space 
(in the presence of two inputs). The curve passing through points B, R, and U is an input 
isoquant, i.e. an effi cient frontier. An isocost is based on input prices, whereas the dashed 
lines going through points A, B, R, and U are iso-aggregate-input lines. Specifi cally, they 
were established by the virtue of the simple linear aggregation function X

kt
 = α

1
xt

1   k
+ α

2
xt

2   k 
,

where α
1 
≥ 0 and α

2  
≥ 0. The slope of an iso-aggregate-input line thus becomes –α

1 
/ α

2
 

and intercept varies depending on the aggregate input quantity in between X
kt  

/ α
2
 and 

X̂
kt 

/ α
2
. The DMU operating at point A could move towards point B in case it managed to 

reduce its input consumption securing the same level of output and holding input structure 

constant; as a result the aggregate input would fall from X
kt
 down to X

kt 
. Minimisation 
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of costs without any restrictions on input mix results in a movement from B to R and 
subsequent decrease in aggregate input from X

kt
 to X


kt
. Minimisation of the aggregate 

input without constraints on the input mix entails a movement from B to U and a decrease 
in aggregate input from X

kt
 to X


kt
. The following measures of effi ciency can be defi ned 

in terms of Figure 1: 
 ITE

kt
 = X

kt
 / X

kt 
, (5)

 AE
kt
 = X


kt
 / X

kt
, (6)

 IME
kt
 = X̂

kt 
 / X

kt
. (7)

Indeed, Equation 5 defi nes an input-oriented measure of the technical effi ciency 
(Farrell, 1957), Equation 6 stands for a measure of the allocative effi ciency (Färe, Gross-
kopf, 1990; Thanassoulis et al., 2008), and Equation 7 defi nes an input-oriented measure 
of the mix effi ciency (O’Donnell, 2008). 

Figure 1  |  The Concept of Mix Ei  ciency (O’Donnell, 2011a)

The measures of TFP and effi ciency can be further depicted in an input-output space 
(Figure 2). The points A, R, and U come from Figure 1 and denote the observed production 
plan, technically effi cient production plan with mix restrictions, and technically effi cient 
production plan without mix restrictions, respectively. The curve passing through points 
B and D is a mix-restricted frontier, whereas that passing through points E and U is an 
unrestricted frontier. The rays passing through each point are associated with respective 
TFP levels. The Farrel (1957) input-oriented measure of effi ciency can thus be described 
in terms of the TFP change: ITE

kt
 = TFP

A
 / TFP

B
 ≡ TFP

BA
. Similarly, the mix effi ciency 

measure defi ned by O’Donnell (2008) can be given as IME
kt
 = TFP

B
 / TFP

U
 ≡ TFP

UB 
.

The input-oriented scale effi ciency measure, ISE, compares TFP at the effi cient point B 
to the highest one under the same input-mix at point D:
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. (8)

The residual mix effi ciency, RME, measures the difference between the maximal TFP for 
the unrestricted frontier (point E) and TFP at the scale-effi cient point D:

 
*

/kt kt
kt

t

Y X
RME

TFP
  

. (9)

The input-oriented scale-mix effi ciency, ISME, encompasses ISE and RME and thus 
compares the maximal TFP at point E to that at the scale-effi cient point D:

 
*

/kt kt
kt

t

Y X
ISME

TFP
 . (10)

Further details on these measures can be found in O’Donnell (2008).

Figure 2  |  The Input-Oriented Measures of Technical, Scale and Mix Ei  ciency (O’Donnell, 2011a)

The TFP effi ciency, TFPE, can therefore be decomposed into several terms: TFPE
kt 

= ITE
kt 

×
 
ISME

kt 
 = ITE

kt 
×

 
ISE

kt 
×

 
RME

kt
. In an input-oriented framework, the TFP index 

given by Equations 1 and 4 can also be decomposed in the following way:
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TFP
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                             . (11)

An analogous decomposition is available for the output orientation (O’Donnell, 
2011a). The components defi ned in Equation 11 can be estimated by employing linear 
programming models.

3.  Estimation of the TFP Indices and their Components via DEA

As Figures 1–2 suggest, estimation of the TFP indices involves estimation of the under-
lying production frontiers. These can be established by the virtue of linear programming 
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models. These models are non-parametric ones and therefore require neither assumptions 
on the functional form of the production frontier nor on distributions of the error terms. 
The estimated is locally linear in the neighbourhood of the effi cient point, (xt

k        
, yt

k     
)  

 
 and 

takes the following form:    ' 't t

k k  xy    , where α and β are non-negative n × 1 
and m × 1 vectors of intensity variables, respectively. As O’Donnell (2011a) argues, the 
underlying technology can be represented by the input and output distance functions. The 
output distance function for the technology available in period t is defi ned as:

        , ' / ',t t t t
O k k k ktD  y yx x   , (12)

with variable γ describing the assumptions on returns to scale. Specifi cally, γ = 0 ensures 
constant returns to scale (CRS) technology. In order to entail a unique solution, the 
aggregate output is constrained by setting (yt

k        
)'α = 1. The following linear programming 

problem then estimates the output distance function under variable returns to scale (VRS):
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Y
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, (13)

where 1 is a Kt × 1 vector of ones, X is an m × Kt matrix of observed inputs, Y is an 
n × Kt matrix of observed outputs, and 0 is a vector of zeros of the appropriate length. 
Here Kt denotes the number of DMUs operating in the period t2. 

In the input-oriented case, the input distance function is used to describe the 
technology prevailing in the period t:

        , ' / ',t t t t
I k k k ktD  x xy y   , (14)

where ς and Ș are non-negative n×1 and m×1 vectors of intensity variables, respectively; 
and δ is a convexity constraint. In this case the aggregate input is restricted by imposing 
(xt

k    
)'Ș = 1. The associated linear programming problem is then given by
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

  

. (15)

Note that the input- or output-oriented measures of effi ciency can be also estimated by 
the means of dual DEA models (envelopment models). In case of the input-oriented effi -
ciency measurement, the following problem is solved:

2 In our case we employed a balanced panel and thus had Kt = 200 for all t.
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where ș is a Kt × 1 vector of peer weights. The model given by Equation 15 involves 
a convexity constraint, ș'1 = 1, which renders variable returns to scale (VRS) estimates of 
effi ciency. An analogous model is available for the output orientation. The CRS estimates 
are obtained via the following problem:
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Computations of  , ,CRS t t

O k kD tx y  is a straightforward generalisation. The scale 
effi ciency can be obtained by /CRS

kt kt ktISE ITE ITE  for an input orientation and 
/CRS

kt kt ktOSE OTE OTE  for an output orientation.
The discussed DEA models will enable to estimate aggregate quantities, levels of 

effi ciency, and TFP.

4.  Estimation of Aggregate Inputs and Outputs

If prices are not available, one cannot employ the well-established indices for aggre-
gation. However, it is Malmquist, Hicks-Moorsteen, and Färe-Primont Indices that can 
be employed without explicit price data. Indeed, the shadow prices are used instead to 
construct the aggregate indices. 

Let x
0
, y

0
, and t

0
 denote the representative input quantities, output quantities, and time 

period, respectively. The representative technology is defi ned by choosing the reference 
production plans3. The DEA models given by Equations 13 and 15 are then solved for 
the representative quantities, i.e. D

O
(x

0
, y

0
, t

0
) and D

1
(x

0
, y

0
, t

0
) are estimated. The latter 

two problems thus yield certain values which solve them for the reference quantities. 
Specifi cally, α

0
 and β

0
 and γ

0
 solve Equation 13 with respect to the representative 

quantities, whereas ς
0
, Ș

0
 and δ

0
 solve Equation 15 with respect to the same quantities. 

The calculated optimal values can then be inserted into Equations 12 and 14, respectively. 
The fi rst-order derivatives (gradients) of D

O
(x

0
, y

0
, t

0
) and D

1
(x

0
, y

0
, t

0
) can be treated as 

3 For instance, O’Donnell (2011b) uses the sample means to construct the two representative vectors 
for the DPIN program and sets M t equal to the sample size. Therefore, the representative technology 
is defi ned by considering all observations. 
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the revenue- and cost-defl ated output and input shadow prices, p
0
 and w

0
, respectively 

(Färe, Grosskopf, 1990):

     0 0 0 0 0 0 0 0 0/ / ', ,O tD     y xyp x    , (18)

     0 0 0 0 0 0 0 0 0/ / ', ,I tD     y x yw x    . (19)

The shadow prices given by Equations 18–19 can be used to compute the aggregate inputs 
and outputs, respectively:

 0( ) 't
kt kX  x w , (20)

 0( ) 't
kt kY  y p . (21)

The aggregate input index defi ned by Equation 20 might then be utilised to estimate 
the minimum aggregate input, X̂

kt
, capable of producing xt

k   
 without restrictions on the 

input-mix structure. O’Donnell (2011a) showed that Equation 16 can be transformed into 
a problem which seeks minimum of the ratio of the optimal aggregate input, X(x) , to the 
observed aggregate output, X(xt

k   
) with an additional constraint, x = ρxt

k   
 , ensuring that the 

input-mix is being held fi xed. After deleting the latter constraint, the following linear 
programming problem yields the optimal aggregate input quantity under unrestricted 
input-mix:
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where X(x) is the Färe-Primont input aggregator function (cf. Equation 20). The output-ori-
ented problem corresponding to Equation 22 is 
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  , (23)

where Y(y) is the Färe-Primont output aggregator function (cf. Equation 21).
The aggregator functions given by Equations 20 and 21 can be employed to estimate 

the maximal TFP in period t:  * x /ma maxktt
k k

kt ktTFP TFP Y X  . The remaining measures 

of effi ciency defi ned in Section 2 are then computed residually: */kt kt tTFPE TFP TFP , 

/kt kt ktOSME TFPE OTE , /kt kt ktISME TFPE ITE , and /kt kt ktRME OSME OSE .
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5.  Data Used

The data for 200 farms selected from the Farm Accountancy Data Network (FADN) 
sample cover the period of 2004–20094. Thus a balanced panel of 1,200 observations 
was employed for analysis. However, the four observations were later omitted due to 
infeasibility. The technical effi ciency was assessed in terms of the input and output indi-
cators commonly employed for agricultural productivity analyses. More specifi cally, the 
utilized agricultural area (UAA) in hectares was chosen as land input variable, annual 
work units (AWU) – as labour input variable, intermediate consumption in Litas, and total 
assets in Litas as a capital factor. The last two variables were defl ated by respective real 
price indices provided by Eurostat. On the other hand, the three output indicators repre-
sent crop, livestock, and other outputs in Litas (Lt), respectively. The aforementioned 
three output indicators were defl ated by respective real price indices. 

The analysed sample covers relatively large farms (mean UAA – 244 ha). As for 
labour force, the average was 3.6 AWU. In order to quantify the differences in effi ciency 
across certain farming types, the farms were classifi ed into the three groups in terms of 
their specialization. Specifi cally, farms with crop output larger than 2/3 of the total output 
were considered as specialized crop farms, whereas those specifi c with livestock output 
larger than 2/3 of the total output were classifi ed as specialized livestock farms. The 
remaining farms fell into a residual category called mixed farming. Table 1 summarizes 
the input and output variables.

Table 1  |  The Means for Inputs and Outputs

Farming type AWU UAA, ha
Intermediate 

consumption, Lt
Assets, Lt

Output, Lt

Crop Livestock Other

Crop 3.6 285 323,980 944,691 494,956 9,599 6,633

Livestock 4.1 130 224,338 1,031,422 85,738 365,520 6,196

Mixed 3.1 122 142,240 521,821 106,183 128,782 2,883

Arithmetic 
average

3.6 244 286,277 893,458 391,845 67,609 6,040

Harmonic 
mean

3.6 155 205,838 760,562 129,861 26,159 4,552

The last row in Table 1 also reports the harmonic means of the farming type-specifi c 
averages to account for different numbers of farms under each farming type. 

6.  Results

The TFP measures and indices were estimated by the virtue of the Färe-Primont TFP 
Indices. Specifi cally, the levels of TFP measures and indices represent the time-specifi c 
performance of the Lithuanian family farms under a transitive multilateral framework, 

4  In Lithuania, the whole FADN sample comprises some 1,300 farms.
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whereas the changes in TFP measures and indices account for dynamics thereof measured 
against the arbitrarily chosen reference farm. 

The following Table 2 reports the mean values of the TFP measures for different 
farming types. Given the Färe-Primont Index is a transitive one, all the comparisons were 
made with reference to year 2004 as a base period. In order to ensure the time reversal 
capability, the rates of TFP change were logged. As a result, the crop farms exhibited the 
growth of TFP of 16.5% during 2004–2009, whereas livestock and mixed farms featured 
TFP growth of 24.3% and 39.1%, respectively. Note that years 2006 and 2009 were those 
of the declining TFP for all farming types. The mean TFP levels for crop, livestock, and 
mixed farming were 0.21, 0.28, and 0.16, respectively. The annual logged growth rates 
ranged in between 3.3% and 7.8% p. a. 

Table 2  |  Dynamics of the TFP across Dif erent Farming Types, 2004–2009

Farming 
type

2004 2005 2006 2007 2008 2009
Mean over

 2004–2009

TFP levels

Crop 0.196 0.194 0.151 0.226 0.251 0.231 0.208

Livestock 0.235 0.259 0.242 0.306 0.347 0.300 0.281

Mixed 0.123 0.154 0.129 0.183 0.187 0.181 0.159

TFP* 0.468 0.522 0.522 0.522 0.559 0.559 0.525

TFP indices (base year 2004)

Crop 1.000 0.993 0.771 1.155 1.284 1.179

Livestock 1.000 1.100 1.031 1.300 1.476 1.275

Mixed 1.000 1.256 1.049 1.494 1.527 1.479

TFP* 1.000 1.116 1.116 1.116 1.194 1.194

Logged TFP changes (%)

Crop 0.0 -0.7 -26.0 14.4 25.0 16.5 3.3

Livestock 0.0 9.5 3.0 26.2 38.9 24.3 4.9

Mixed 0.0 22.8 4.8 40.2 42.3 39.1 7.8

TFP* 0.0 11.0 11.0 11.0 17.7 17.7 2.9

Note:  TFP*denotes the level of maximal TFP. The means of TFP levels are averages, whereas the means of 
TFP changes are given as ln(TFP2009 / TFP2004) / 5. 

The TFP effi ciency was decomposed into the four terms, namely TFP*, ITE, ISE, 
and RME. The maximal TFP (TFP*) increased throughout the research period due to 
assumption of no negative technical change: the value of 0.468 was observed for year 
2004, 0.5223 for 2005–2007, and 0.559 for 2008–2009. Therefore, the best performing 
farms managed to increase their TFP even further. Specifi cally, the technical change of 
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some 17.7% had occurred during 2004–2009 (2.9% p. a.). Figure 3 exhibits the kernel 
densities of the remaining effi ciency measures for the three farming types. Indeed, these 
plots depict variation of the respective TFP measures for the whole period of 2004–2009 
The Gaussian kernels (Silverman, 1986) were used to approximate the underlying empir-
ical distributions. 

The upper left plot of Figure 3 depicts the densities of the TFP effi ciency (TFPE) 
scores. TFPE indicates the extent to which a certain farm is deviated from the point 
of maximal productivity: The lower TFPE, the lower the ratio of the observed TFP to 
the maximal TFP. These computations can be interpreted as a movement from point 
A towards point E in Figure 2. Note that the point of maximal productivity, E, is located 
on the mix-unrestricted frontier. It was the livestock farms that exhibited the highest 
mean effi ciency (0.53). The latter farming also exhibited the highest standard deviation 
(SD) of 0.19 associated with TFPE. The coeffi cient of variation (CV), however, was the 
lowest one (0.37) if compared to the remaining farming types. The crop farming featured 
the mean TFPE of 0.4 and SD of 0.16. Accordingly, the CV approached the value of 0.41. 
Finally, the mixed farming was peculiar with rather low mean TFPE of 0.30, whereas SD 
remained at 0.17 and CV increased up to 0.55. As the upper left plot in Figure 3 suggests, 
the underlying density for the mixed farms was a bi-modal one. Therefore, at least two 
clusters of the mixed farms can be considered. The latter implies that in spite of the diver-
sifi cation, the mixed farms did not manage to maintain a substantial level of the TFPE as 
well as its variation. 

The densities for input-oriented technical effi ciency (ITE) are depicted in the upper 
right plot of Figure 3. ITE compares the observed TFP to that related to the technically 
effi cient production plan. The latter levels of TFP are associated with, respectively, points 
A and B in Figure 2. The ITE scores, thus can be interpreted as factors of the input 
contraction needed (holding the structure of the input-mix fi xed) to ensure the techni-
cal effi ciency. It is evident that the crop and mixed farms concentrated around the two 
values of the ITE with one of these values falling in between 0.4 and 0.6, and another 
approaching unity (i.e. technically effi cient region). Indeed, the crop farming featured the 
lowest mean ITE, namely 0.69. Furthermore, the SD of 0.19 resulted in the CV of 0.27, 
which was the highest value if compared to other farming types. The mixed farming was 
associated with more favourable ITE indicators: mean ITE was 0.73, SD – 0.15, and CV 
– 0.20. On the other hand, it was the livestock farms that were specifi c with the highest 
ITE. Particularly, the mode of the underlying density was located near the value of unity 
and the mean ITE was 0.85. In addition, the variation in the effi ciency was also a low one 
(SD – 0.14 and CV – 0.16). 
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Figure 3  |  Densities of the Ei  ciency Scores for Dif erent Farming Types

Note: Bold, dashed, and dotted lines represent densities for crop, livestock, and mixed farms, respectively
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The densities of the input-oriented scale effi ciency (ISE) scores are given in the 
lower right plot of Figure 3. ISE compares the TFP at technically effi cient point to that 
prevailing at the point of mix-invariant optimal scale. Thus, holding input-mix fi xed we 
further move from point B towards point D in terms of Figure 2. As one can note, these 
densities are rather compact ones with means located around the point of effi ciency. 
Therefore, it is likely that the underlying technology is a CRS one. However, this paper 
does not focus on the issue5. The livestock farming was associated with the highest mean 
ISE, 0.91, as well as the lowest variation thereof (SD – 0.10, CV – 0.11). The crop farms 
were specifi c with the mean ISE of 0.86 and a higher level of variation in these scores 
(SD – 0.17, CV – 0.20). Finally, the mixed farms diverged from the optimal scale to the 
highest degree: The mean ISE was 0.76, SD – 0.19, and CV – 0.26. 

The lower left plot of Figure 3 presents the densities of the residual mix effi ciency 
(RME) scores across the three farming types. RME measures the TFP gains possible due to 
changes in the input-mix. Specifi cally, the TFP at mix-invariant optimal scale is compared 
to the TFP associated with optimal scale of the unrestricted frontier. Therefore, we look at 
points D and E in Figure 2. The livestock farms featured the highest mean RME (0.69), 
albeit its variation was the second lowest one (SD – 0.17, CV – 0.25). The crop farming 
exhibited similar mean RSE (0.67) as well as the lowest variation thereof (SD – 0.13, CV – 
0.20). The mixed farming was associated with the lowest mean RSE (0.55) and the highest 
variation thereof (SD – 0.20, CV – 0.37). Given the density depicted in Figure 3, the mixed 
farms were grouped around RME levels of 0.2–0.4 and 0.6–0.8. Therefore, certain sub-types 
of the mixed farms did not manage to achieve the substantial level of RSE. 

The results do indicate that the ITE was a decisive factor causing decrease in TFPE for 
crop and mixed farms. Meanwhile, the ISE constituted a serious problem for mixed farms. 
Indeed, these farms were the smallest ones if compared to the remaining farming types 
(cf. Table 1). Finally, the mix effi ciency was low for all farming types indicating the need 
for implementation of certain farming practices allowing for optimisation of the input-mix. 

The econometric models were further employed to analyse the underlying drivers 
of the TFP growth. The TFPE, ITE, ISE, and RME were regressed over the selected 
environmental variables describing farm specifi cs. The following factors were chosen as 
regressors. The utilised agricultural area (UAA) identifi ed the scale size and was considered 
a proxy for farm size. Indeed, the question of the optimal farm size has always been 
a salient issue for policy makers and scientists (Alvarez, Arias 2004; Gorton, Davidova 
2004; van Zyl et al. 1996). The ratio of crop output over the total output (CropShare) 
captures the possible difference in farming effi ciency across crop and livestock farms. 
Similarly, the dummy variable for organic farms (Organic) was used to quantify the 
difference between organic and conventional farming. It is due to Offermann (2003) 
that Lithuanian organic farms exhibit 60–80% lower crop yields depending on crop 
species if compared to same values for conventional farming. The demographic variable, 
namely age of farmer (Age) was introduced to ascertain whether young–farmers–oriented 
policy measures can infl uence the structural effi ciency. Finally, the effect of production 
subsidies on effi ciency was estimated by considering ratios of production subsidies to 
output (SubsShare).

5 The bootstrapping-based tests can be employed to test the hypotheses of returns to scale (Simar, 
Wilson, 2002).
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Given the analysis relied on the panel data, the F-test was employed to check 
whether the data do exhibit farm- and time-specifi c effects. The null hypothesis of insig-
nifi cant effects was rejected at the signifi cance level of 1%. Furthermore, the Hausman 
test rejected the random-effects model at the signifi cance level of 1%. Accordingly, the 
two-way fi xed-effects models were estimated for TFPE, ITE, ISE, and RME:

 ( ) 't t t

k k k t ky u u    z , (24)

where y is the component of TFP ( { , , , }y TFPE ITE ISE RME ), β is the vector of coeffi -
cients, zt

k
 is the vector of the environmental variables, u

k
 is farm-specifi c effect, and  u

t  
is 

time-specifi c effect. The elasticities can then be computed as follows:

 /t t t

k k kye z , (25)

where /t t t

k k kye z  is a vector of elasticities of the same dimension as β and zt

k
.

The estimated models are given in Table 3. The ITE and RME were poorly explained 
by the selected variables (R2 were 0.05 and 0.10, respectively). The results showed that 
the farm size had a positive effect on TFP, ISE, and RME. Therefore, the larger farms 
are more likely to increase their TFPE by operating at the optimal scale and adjusting 
their input-mixes. However, the ITE remained unaffected by the farm size. The crop 
share had a negative effect on TFPE, ITE, and RME. The latter fi nding implies that crop 
and mixed farms experienced lower technical and mix-effi ciency as well as TFP levels. 
Nevertheless, these farms did not deviate from the optimal size of scale to a signifi cant 
extent. The ratio of subsidies to the total output had a negative impact on TFPE, ITE, 
and ISE. Therefore, the increasing subsidy rate negatively affected the TFP as well as 
technical effi ciency. Given the relation to the mix-effi ciency measure (RME) was not 
signifi cant, it can be concluded that the subsidies do accelerate farm growth but do not 
distort the input-mix. Farmer age had no signifi cant impact on the analysed effi ciency and 
TFP measures save that of RME: It turned out that older farmers manage to achieve higher 
mix-effi ciency. The latter fi nding might be explained by the fact that more experienced 
farmers ensure the proper input-mix structure. Accordingly, the educational programmes 
for the younger farmers remain important in the light of results of the analysis. Finally, 
the organic farming was not associated with any signifi cant effects on TFP and effi ciency.

Table 3  |  Coei  cients of the Fixed-Ef ects Model

TFPE ITE ISE RME

UAA 0.00021*** 0.00003 0.00014 * 0.00012 *

CropShare -0.36191*** -0.29410 *** -0.05598 -0.17346 ***

SubsShare -0.13163*** -0.09888 *** -0.15401 *** -0.01435

Age 0.00105 0.00028 0.00011 0.00154 .

Organic 0.01029 -0.02610 0.03664 -0.01305

Adj. 0.13 0.05 0.10 0.02

F-statistic 29.877*** 11.4348*** 28.6*** 5.87311***

Note: Signii cance codes for respective p-values: ‘***’ – 0.001; ‘**’ – 0.01; ‘*’ – 0.05; ‘.’ – 0.1.
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Given the environmental variables were expressed in different dimensions, the effi -
ciency elasticities were computed in terms of Equation 25. The results are given in Table 4. 
Farm size in hectares (UAA) was the least important factor in terms of its contribution to 
the effi ciency and TFP levels. Farmer age played an important role in the context of RME. 
Meanwhile, the negative effect of crop share outweighed those of subsidy rate and farm 
size. One can further note that organic farming practice was not associated with signifi -
cant changes in TFP and its components.

Table 4  |  Ei  ciency Elasticities (E) across Dif erent Models

UAA CropShare SubsShare Age Organic

TFPE
Mean E 0.127 -0.870 -0.201 0.151 0.002

E at mean 0.120 -0.670 -0.100 0.113 0.001

ITE
Mean E 0.018 -0.705 -0.150 0.037 -0.006

E at mean 0.017 -0.543 -0.074 0.028 -0.003

ISE
Mean E 0.081 -0.135 -0.235 0.017 0.009

E at mean 0.076 -0.104 -0.117 0.012 0.004

RME
Mean E 0.073 -0.417 -0.022 0.222 -0.003

E at mean 0.069 -0.321 -0.011 0.167 -0.001

Note: Bold i gures are those associated with signii cant regression coei  cients.

The technical change of some 19.4% throughout 2004–2009 (3.6% p.a.) identifi ed 
by the means of the Färe-Primont Index was higher than that previously obtained by the 
Malmquist Index (Balezentis et al., 2013) because the maximal TFP is not estimated by 
the Malmquist Index. In addition, different aggregator functions are involved in compu-
tations of these two productivity indices. Anyway, crop and mixed farms exhibited the 
highest mean TFP gains as it was the case with Malmquist Index. 

All in all, the TFP effi ciency of the Lithuania family farms was mainly determined 
by the technical and mix-effi ciency during 2004–2009. These measures, in turn, were 
better for livestock farming if compared to mixed and crop farming. Specifi cally, the 
increase of crop share in the total output of 1% caused decrease in the TFPE of 0.87% on 
average. An increase in subsidy rate of the same margin resulted in decrease in TFPE of 
0.2% on average. 

7.  Conclusions

The Färe-Primont Index enabled to estimate the dynamics of the TFP in the Lithuanian 
family farms. Furthermore, the TFP was decomposed into measures describing not only 
the conventional effi ciency and technology changes but also mix-effi ciency. Therefore, 
the technical scale, and scope effi ciencies were considered. 

The The Färe-Primont Index indicated the technical change of some 17.7% during 
2004–2009 (2.9% p.a.). The latter estimate is higher than that obtained by the Malmquist 

DOI: 10.18267/j.pep.510



240 Volume 24 |  Number 02 | 2015PRAGUE ECONOMIC PAPERS

Index in the previous studies. However, both of these indices showed the same differen-
ces among farming types. The results do indicate that the technical effi ciency was a deci-
sive factor causing decrease in TFP effi ciency for crop and mixed farms. Meanwhile, the 
scale effi ciency constituted a serious problem for mixed farms. Indeed, these farms were 
the smallest ones if compared to the remaining farming types. Finally, the mix effi ciency 
was low for all farming types indicating the need for implementation of certain farming 
practices allowing for optimisation of the input-mix. 

The econometric analysis implied that farm size in hectares was the least important 
factor in terms of its contribution to the effi ciency and TFP levels. Farmer age played 
an important role in the context of the residual mix effi ciency. Meanwhile, the negative 
effect of crop share outweighed those of subsidy rate and farm size. One can further note 
that organic farming practice was not associated with signifi cant changes in TFP and its 
components.
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