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ON MULTIVARIATE METHODS IN ROBUST ECONOMETRICS 

Jan Kalina* 

Abstract: 

This work studies implicitly weighted robust statistical methods suitable for econometric problems. 

We study robust estimation mainly for the context of heteroscedasticity or high dimension, which 

are up-to-date topics of current econometrics. We describe a modifi cation of linear regression 

resistant to heteroscedasticity and study its computational aspects. For a robust version of the 

instrumental variables estimator we propose an asymptotic test of heteroscedasticity. Further 

we describe robust statistical methods for dimension reduction and classifi cation analysis. We 

propose the robust quadratic classifi cation analysis based on a new minimum weighted covariance 

determinant (MWCD) estimator. In general the robust methods based on down-weighting less 

reliable observations are resistant to outlying values (outliers) and insensitive to the assumption 

of Gaussian normal distribution of the data. The methods are illustrated on econometric data 

examples.

Keywords: least weighted squares, heteroscedasticity, multivariate statistics, model selection, 

diagnostics, computational aspects

JEL Classifi cation: C14, C13, C51.

1. Introduction

The least weighted squares (LWS) regression is a robust regression method based 

on the idea of down-weighting less reliable observations proposed by Víšek (2001). 

In this paper we use the idea of the LWS estimator to modify popular econometric 

methods, which are sensitive to outliers. 

Recent trends in robust statistics and econometrics aim at a systematic treatment of 

heteroscedasticity and dimension reduction for high-dimensional data. Hekimoglu 

et al. (2009) performed a simulation study to examine robustness properties of 

regression estimators to different types of outliers. Alqallaf et al. (2009) considered 

a contamination model for high-dimensional data allowing to modell different types 

of outliers and showed that standard estimators are very vulnerable to contamination 

for high-dimensional data. Gelper et al. (2009) carried out robust online estimation 

of variance in a univariate time series in a moving window using three consecutive 

observations. 

* Jan Kalina, Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod 

Vodárenskou věží 2, CZ – 182 07, Praha 8 (kalina@cs.cas.cz). The research is supported by Center 

of Biomedical Informatics, Project 1M06014 of the Ministry of Education, Youth and Sports of the 

Czech Republic. 

DOI: 10.18267/j.pep.411



70       PRAGUE ECONOMIC PAPERS, 1, 2012

Only recently there has been studied highly robust multivariate estimation. García-

Escudero and Gordaliza (2005) proposed to detect outliers in multivariate elliptical data 

rigorously by means of a robustifi ed Mahalanobis distance from the robust midpoint 

of the data. Salibián-Barrera and Yohai (2006) proposed new algorithms for robust 

estimation of location and dispersion for high-dimensional multivariate datasets. Riani 

et al. (2009) defi ned outlier identifi cation rules for the multivariate model. Still the 

theory of diagnostic tools for robust statistical methods is not developed and robust 

multivariate analysis is a hot topic with promising applications to econometrics. 

Therefore our work aims to implement the idea of the least weighted squares regression 

to substantial topics of modern robust statistics and econometrics, mainly to diagnostic 

tools and multivariate methods.

This paper has the following structure. Section 2 recalls the least weighted squares 

estimator and its properties. Section 3 is devoted to robust regression resistant under 

heteroscedasticity, which is a model with different variances of individual disturbances. 

Section 4 proposes a diagnostic test for the robust instrumental weighted variables. 

The methods of both Sections 3 and 4 are special cases of a robust generalized method 

of moments estimator, which is popular in econometrics. Section 5 considers robust 

ways of reducing the dimension for high-dimensional data. Finally Section 6 studies 

robust quadratic classifi cation analysis. Implicit weighting turns out to be a promising 

concept to obtain robust methods suitable for econometric applications.

Some of the methods of this paper belong to a general context called robust generalized 

method of moments (GMM). This is true for the robust regression effi cient under 

heteroscedasticity and instrumental weighted variables estimator. The generalized 

method of moments estimator is a general tool for statistical estimation given by 

orthogonality conditions is defi ned for a general parametric situation involving 

instrumental variables by Hansen (1982) and we refer to Greene (2002) or other 

econometric textbooks for an overview. The connection to the classical method of 

moments is shown by Wooldridge (2001). While there is an extensive number of 

references on robust inference for the linear regression, only a few econometric papers 

extend the results to the more general GMM estimator: Ronchetti and Trojanni (2001) 

studied robustness properties of GMM estimation with applications to the ARCH model; 

Wagenvoort and Waldmann (2002) proposed an instrumental variables estimator with 

a bounded infl uence function; and Víšek (2005) used the idea of down-weighting less 

reliable observations to robustify the GMM estimator.

The methods of this paper also form an integral part of the task of model selection, 

which is a crucial topic in current multivariate econometrics and statistics. The task 

of selecting the suitable model requires to include suitable independent variables 

or instruments to the resulting model, which will be a submodel of the original 

full model. The following properties are required from reliable methods of model 

selection: accurate predictions; clear interpretation; robustness and stability; low bias 

in parameter estimation or hypotheses testing in the resulting model. 
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2.  Least weighted squares regression 

This section recalls the least weighted squares (LWS) regression estimator of Víšek 

(2001) and summarizes its properties and advantages. Let us consider the linear 

regression model in the form

                    0 1 1 ... ,i i p ip iY x x e         i =1, ..., n,                                      (1)

which can be rewritten in the usual matrix notation as Y = Xȕ + e. The least weighted 

squares estimator is one of robust estimation methods with a high breakdown point, 

which is a statistical measure of sensitivity against noise or outliers in the data 

(see Rousseeuw and Leroy, 1987). The LWS estimator down-weights less reliable 

observations based on the values of squared residuals. The magnitudes of nonnegative 

weights w1 , w2 , ..., wn must be specifi ed before the computation of the estimator. 

These are, however, assigned to particular data points after a permutation, which is 

determined automatically only during the computation based on the residuals. It is 

reasonable to choose w1 , w2 , ..., wn as a non-increasing sequence so that the most 

reliable observations obtain the largest weights, while outliers with large values of the 

residuals get small (or zero) weights. One possibility is to choose linearly decreasing 

weights. The data-adaptive weights of Čížek (2008) are another choice.

Let us denote the i-th order value among the squared residuals for a particular value of 

the estimate b of the parameter ȕ by u2
(      i)(b). The least weighted squares estimator bLWS  

for model (1) is defi ned as

 bLWS = argmin 
2

( )

1

( )
n

i i

i

w u b
 ,                (2)

where the minimum is computed over all possible values of b. 

The least trimmed squares (LTS) regression proposed by Rousseeuw and Leroy (1987) 

represents a special case of least weighted squares with weights equal to zero or one 

only. The computation of the LWS estimator is intensive and computational aspects 

are studied by Kalina (2008). 

The least weighted squares estimator has interesting properties and applications. In 

particular it is robust for contaminated data sets; here it is usually assumed that the 

disturbances represent a mixture of normally distributed random variables with outliers. 

At the same time the estimator is reliable for data with normally distributed disturbances 

without contamination; this reliability is measured in terms of a high effi ciency, which 

compares the asymptotic variability of the estimator relatively to the variability of the 

least squares estimator. Theoretical properties including the robustness of the estimator 

are studied by Čížek (2008), who conjectures that the LWS estimator is a reasonable 

compromise between the least squares and least trimmed squares. Diagnostic tools 

for the disturbances e (random regression errors) are available. For example tests of 

heteroscedasticity and autocorrelation of the disturbances can be computed employing 

weighted residuals (see Kalina, 2007); such diagnostic tests are asymptotically 

equivalent with classical tests for least squares regression. Another advantage of the 
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estimator is that no detection of outliers is actually needed to compute it, because 

outlying data are down-weighted automatically. The LWS estimator has a small local 

sensitivity compared to the LTS.   

3.  Robust Regression Effi cient under Heteroscedasticity

Cragg (1983) proposed a modifi cation of the least squares regression, which has 

become popular in econometrics for its effi ciency also under heteroscedasticity. This 

section proposes a robust analogy of Cragg’s approach to linear regression resistant to 

heteroscedasticity and  studies computational aspects of the proposed estimator. This 

may be a suitable method for high-dimensional data.

Let us consider the linear regression model in the form (1) with heteroscedastic 

disturbances e. This means the violation of the classical assumption var ei = σ2. 

The least squares estimator bLS of the regression parameters ȕ is not effi cient under 

heteroscedasticity of the disturbances e and further the estimator of var bLS is biased 

(see Greene, 2002). It follows that the confi dence intervals and hypothesis tests 

concerning ȕ are not valid. 

Cragg (1983) proposed a useful transformation allowing to obtain a more reliable 

estimator of ȕ and mainly of its variance even without testing if the heteroscedasticity 

is present in the model (1). The idea is to use some auxiliary variables which could 

possibly contribute to explaining the variability of the disturbances e. The usual choice 

contains squares of all independent variables from (1) and also products of always two 

different independent variables. This corresponds to using the matrix (let us say Q) 

consisting of all columns of the original design matrix X and the auxiliary variables as 

additional columns. The model (1) is transformed to 

 QT  Y =QTXȕ +QTe,                             (3)

where T  denotes transposition of a matrix. The parameters ȕ in (3) can be estimated 

by the generalized least squares (GLS) estimator of Aitken (1935), which will be 

denoted by bGLS. In general Aitken estimator is based on a known variance matrix of the 

disturbances. Because in our case the variance matrix of QT e is unknown, we estimate 

it and plug in this estimator into the formula for Aitken estimator, which yields the 

so-called admissible (or estimated) Aitken estimator.

Let us denote the diagonal matrix with squared residuals in (3) by S. This is an estimator 

of the variance matrix of the disturbances e based on a naïve estimator of ȕ. Now it is 

possible to obtain an estimator for var bGLS  in the form

 XTQ(QTSQ)–1QTX.    (4)

The number of rows in the model (3) is equal to the number of columns in the matrix 

Q, which is the number of variables in the original model (1) together with the number 

of auxiliary variables contained in columns of Q. This is the reason for the success of 

the method for data with a high dimension, which is reduced for the task of estimating 
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the regression parameters. At the same time it is not needed to include the additional 

columns to the original model to replace (1) by the model Y = Qȕ + e.

Now we describe a robustifi cation of Cragg’s approach, which is alternative to Víšek 

(2005). The idea is to down-weight less reliable observations (possible outliers) while 

the most credible and typical data points obtain the largest weights. The weights 

are assigned to particular data points automatically during the computation of the 

estimator. In general the weights represent an important diagnostic tool explaining 

the outlyingness of individual data points. Particularly the linearly decreasing weights 

 w = 1 – 
1i

n


,   i = 1, ..., n,  standardized to 

1

n

i

i

w
 = 1,  (5)

are a good choice well-established also for the LWS in the linear regression context 

(see Kalina, 2008). However, the optimal choice of the weights for implicitly weighted 

estimators remains to be an open problem. 

We introduce weights directly to the model (3) in the form

 QTWY = QTWXȕ + QTWe,                                (6)

where W is a weight matrix containing weights determined by the least weighted 

squares in the original model (1). This down-weights outliers both in the response and 

the independent variables. The whole procedure starts by the LWS and then uses the 

(classical) weighted regression to estimate ȕ in the transformed model (4). The method 

can be described as a two-stage estimator: 

1.  The least weighted squares regression is used in the model (1). The matrix W is 

obtained. The matrix S is obtained as the diagonal matrix containing squares of 

residuals.

2.  Using the transformation (6), the estimator of ȕ is obtained as the admissible 

Aitken estimator, where var (QTWe) is approximated by QTWSWQ.

Example 1. The procedure is illustrated on a data set from Maddala (1988). Consumption 

expenditures of the total number of n = 20 families are modelled as linear response of 

the income of each family. The least squares estimate of ȕ is b = (0.847, 0.899)T  with 

standard errors (0.703, 0.025)T. While the linear trend is correctly estimated, standard 

errors of b are overestimated due to heteroscedasticity.

We apply Cragg‘s approach to the least squares regression in our example. Let the 

matrix Q contain the square of the income as an auxiliary variable. The formula (6) 

is a linear system with three rows and two parameters, equivalent to solving a linear 

regression with two regressors without intercept. The scatter plots of QTY against both 

columns of QTX show that the three points are very close to being collinear. Using 

the Cragg‘s approach the regression parameters are estimated by (0.628, 0.910)T with 

standard errors (0.298, 0.020)T. The estimate of ȕ is very similar to the classical least 

squares, while there is reduction in the variability. The new estimate of ȕ is therefore 

more accurate than the classical estimate, which is deceived by heteroscedasticity. 
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The least weighted squares estimate of ȕ with linear weights is equal to (0.399, 0.939)T

with asymptotic standard errors (0.812, 0.029)T. The two-stage LWS regression with 

data-adaptive weights estimates ȕ by (0.691, 0.904)T. This regression line is very close 

to the least squares regression line. The largest weights correspond to data very close 

to the estimated line. The asymptotic standard errors of bLWS are (0.704, 0.904)T; we 

point out that the asymptotic variance of LWS is derived for independent identically 

distributed normal disturbances and is deceived by heteroscedasticity.

The modifi cation of the two-stage least weighted squares using (6) with the square of the 

income as auxiliary variable and with data-adaptive weights gives the estimate of ȕ equal 

to (0.645, 0.906)T with standard errors equal to (0.047, 0.0003)T, where the improvement 

is remarkable compared to asymptotic variance for the least weighted squares. 

4.  Diagnostics for the Instrumental Weighted Variables Estimator

The instrumental variables (IV) estimator has become a standard tool for estimation 

in econometrics (see Greene, 2002). This section presents an asymptotic version of 

Szroeter’s  heteroscedasticity test for a robust instrumental variables estimator.

The instrumental variables estimator does not assume that the disturbances e are 

uncorrelated with the independent variables, while there is the total number L of 

instrumental variables available satisfying L ≥ p. Let the vector Zi = (Zi1 , Zi2 ,…, Zi L )
T

of values of the instruments correspond to the i-th observation. Let the matrix Z contain 

the values of the instruments so that data vectors Zi are contained in rows of Z.

The estimation in the model (1) with instrumental variables starts with explaining 

the regressor X by the instruments Z, in other words there is assumed a linear model 

X = ZȖ + v, where γ is a vector of (arbitrary) regression parameters and v is a vector of 

disturbances. The instrumental variables estimator is a popular method in econometrics 

and there is paid an intensive attention to the task of selecting suitable instruments. At 

the same time the method is suitable also for high-dimensional problems, because it is 

not required to include the instruments to the original model (1), while the number of 

instruments can be large.

Víšek (2006) proposed a robust version of the instrumental variables estimator called 

instrumental weighted variables (IWV) estimator bIWV. The IWV estimator is based on 

the idea of down-weighting less reliable observations, similarly with the least weighted 

squares regression. Víšek (2006) studied the consistency and asymptotic normality of 

the estimator for the special case L = p and proved the asymptotic representation of 

bIWV. The FAST-LTS algorithm proposed by Rousseeuw and van Driessen (1999) can 

be modifi ed to compute an approximation to the estimator.

In this work we present the asymptotic Szroeter‘s test of heteroscedasticity for the 

instrumental weighted variables estimator, which can be carried out using the classical 

instrumental variables. Similarly to the original work of Szroeter (1978) we propose 

a class of tests of heteroscedasticity assuming var ei ≥ var ei –1 for i = 2, ..., n. It is 

required to specify constants h1, ..., hn satisfying hi ≤ hj for i < j. Szroeter (1978) 
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described several possibilities for the choice of h1, ..., hn . One possibility is to select 

them as indicators assigning data to groups similarly with the Goldfeld-Quandt test 

(see Kmenta, 1986). Another choice 

 hi = 2 1 – cos 
1

i

n

       ,    i =1,...n, (7)

leads to such form of the test, which has the same critical values as the Durbin-Watson 

test of independence of the disturbances e.

Let us introduce the notation B for the diagonal matrix B = diag{h1 ,... , hn }, In for the 

unit matrix with dimension (n,n) and M = In – X(ZTX)–1ZT. Let us express the residuals 

u of the IWV estimator as u = Y – XbIWV and let us denote their mean by u . The 

asymptotic Szroeter‘s test for the IWV residuals is based on the result of Víšek (2006), 

who proves the asymptotic representation for the IWV estimator under technical 

assumptions; here we assume them to be fulfi lled.

Theorem 1. Let us assume the assumptions of Víšek (2006) to be fulfi lled. Then the 

test statistic 

 ( )u u T B ( )u u / ( )u u T  ( )u u                      (8)

is asymptotically equivalent in probability with 

 eTMTBMe/eTMTMe. (9)

The proof follows from Kalina (2007), who proves the asymptotic equivalence of the 

Durbin-Watson test statistic computed with residuals of the least weighted squares 

regression with the Durbin-Watson test statistic computed with residuals of the 

least squares regression. Here, however, the asymptotic representation for the IWV 

estimator is used, which is derived by Víšek (2006) under general assumptions; apart 

from technical conditions the weights are assumed to be generated by a nonincreasing 

function and there is assumed a unique solution of the normal equations defi ning the 

IWV estimator. Based on Víšek (2006), (8) is approximated by

  T  B  T  /  T     ,   (10)

where the asymptotic approximation gives u = κ + oP(n –1/2) with the term oP(n –1/2) 

negligible in probability.

The Szroeter‘s test statistic is scale-invariant under the null hypothesis. The asymptotic 

test for the residuals of the instrumental weighted variables estimator can be computed 

using simulations. Random disturbances following normal distribution with zero 

expectation and any variance can be repeatedly generated to obtain the exact p-value 

of the test (8). This is an approximation to the p-value of the asymptotic test.

We illustrate the IWV estimator on two examples which reveal its advantages. The 

robustness of the instrumental weighted variables estimator will be demonstrated 

by comparing it with a non-robust estimator (Example 2) and by cross-validation 

(Example 3).
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Example 2. We work with furniture data from Kmenta (1986). The response and 

the independent variable are both measured in furniture manufacturing industry in 

11 different countries of the world. However, to compare the classical and robust 

approaches, we introduce an outlier, namely we replace the response of the fi rst 

observation (the value 0.768) by the value -0.2. The data after this modifi cation are 

shown in Figure 1 (left), where the outlier is now in the right bottom corner of the 

plot. Firstly the linear regression of the response against the regressor is considered. 

The least squares estimate of b is (-1.48, 0.540)T, while the least weighted squares 

with data-adaptive weights is different with (-1.91, 0.706)T. Kmenta (1986) warned 

that additional variables may contribute to the variability of the response, so the 

disturbances may not be uncorrelated with the regressor. Therefore he recommended to 

use an instrumental variable, namely the regressor measured in knitting mill industry. 

The relationship between the regressor and the instrument is very nicely linear.

Figure 1

Furniture Data of Example 2

        

Left: original data with an outlier. Right: estimated values fi tted by the classical instrumental variables estimator (grey 

triangles) and by the robust instrumental variables estimator (dark circles).

The estimator of b using instrumental variables estimation is similar to the result of the 

least squares estimate computed without instruments, namely (-1.44, 0.526)T. The robust 

instrumental variables estimator is computed as the two-stage estimator with the least 

weighted squares in each stage with data-adaptive choice of weights. The estimate of 

b equals (-1.89, 0.699)T, similarly with the LWS estimate without instruments. Figure 

1 (right) shows the classical and robust estimates using instrumental variables. We can 

conclude that the robust approach truly brings an improvement over the classical one, 

which is deceived by the outlier.

Example 3. We simulate n = 60 observations (Xi , Yi , Zi )
T, i = 1, ..., n, in the 

following way. X = (Xi , …, Xn )
T are equidistant values between 0.167 and 10.0 and 

Z = (Z1 , …, Zn)
T are generated as Zi = Xi + vi , where v1 , …, vn are independent 
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identically distributed random disturbances following the normal distribution 

N(0, 0.25).

The response values Y = (Y1,…, Y55) are created as Yi = Xi + ei , where the independent 

identically distributed random disturbances ei follow the normal distribution 

N(0, 0.25); to introduce outliers to the data set we generate Y56 , …, Y60 as independent 

identically distributed random variables with the normal distribution N(2,1). The plot 

of Y against X and the plot of X against Z are shown in Figure 2. 

Our aim is to estimate the parameters ȕ in the model 

 0 1    1, 2, ..., ,    i i iY X e i n  (11)

using Z as an instrument for X. The IWV estimator based on the LWS with linearly 

decreasing weights (5) yields the estimate (0.112, 0.960)T much closer to the true value 

b = (0,1) T compared to the classical IV estimator yielding (1.089, 0.679) T.

Figure 2

Simulated Data of Example 3

Left: plot of the regressor X against the instrument Z. Right: plot of the response Y against the regressor X. 

To compare the prediction accuracy of the classical and robust approaches to the 

IV estimation we apply cross-validation. We use the leave-1-out cross-validation 

method, which involves fi tting the model over the observations after trimming away 

1 randomly selected observation; similarly the leave-3-out method is trained over all 

data after removing 3 randomly selected data points. The results are presented in Table 

1 for the leave-1-out (k = 1) and leave-3-out methods (k = 3) for 1000 experiments 

corresponding to random selections of removed observations.
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Table 1

Leave-k-out Cross-Validation for Simulated Data of Example 3

K=1 k=1 k=3 k=3

IV IWV IV IWV

MSE 5.06 5.99 5.08 7.68

SEP 2.27 2.40 2.26 2.67

Trimmed MSE 1.70 0.24 1.70 0.29

Trimmed SEP 1.19 0.48 1.18 0.52

Note: The classical instrumental variables (IV) and robust instrumental weighted variables (IWV) estimation procedures 

are compared for k=1 and k=3. Results are evaluated by means of the mean square error (MSE) and standard error 

of prediction (SEP) for n=60 (top) and their trimmed analogs trimming away 5/60 of the data (bottom).

Top half of Table 1 summarizes the mean values of the mean square error (MSE) and the 

standard error of prediction (SEP), which are characteristics of the predictive quality 

of the particular model; see Varmuza and Filzmoser (2009) for details. Large values 

of MSE and SEP of the robust IV estimator are caused by an extremely poor fi t for 

the outliers, while the classical IV estimation is intrigued by them. Only the trimmed 

analogs of the MSE and SEP show realistic outcomes yielding the robust IV estimator 

as a clear winner in the quality of the fi t and prediction. Further we use trimmed 

analogs of MSE and SEP, which are presented in the bottom half of Table 1. These are 

computed as the classical MSE and SEP after a complete ignoring of 5 mostly outlying 

results; therefore only 55/60 * 100 % ≈ 91.7 % of the original observations are used 

to compute these robust characteristics. Particularly we fi nd observations yielding the 

largest absolute prediction error and compute the MSE and SEP only for the remaining 

cases. The difference between k = 1 and k = 3 is not very dramatic. To summarize, the 

big improvement of the robust IV estimation compared to the classical IV estimator 

is a signifi cant argument in favour of the instrumental weighted variables estimator.

5.  Dimension Reduction for High-Dimensional Data Sets

Robust methods for dimension reduction include for example robust versions of the 

principal components analysis or instrumental variables estimation. Here we describe 

useful methods applicable to econometrics. The purpose of this section is to review 

usual steps, which are often carried out as a preprocessing before applying (robust) 

classifi cation analysis, which will be our aim in Section 6. 

Croux (2000) described a robust modifi cation of the principal component analysis 

(PCA) method based on robust estimation of the covariance or correlation matrix and 

replacing eigenvalues and eigenvectors by their robust counterparts. M-estimators and 

S-estimators are examined together with their infl uence functions. 

A more robust approach with respect to outlier values in terms of the breakdown 

point is proposed by Hubert (2005), applying the concept of the projection pursuit 

technique. This is a general method of Rousseeuw and Leroy (1987) for fi nding the 
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most informative directions or components for multivariate (high-dimensional) data. 

Such classifi cation is based on a robust measure of spread of the data, taking into 

account the outlyingness of each data point. Candidate directions for the principal 

components are selected by a grid algorithm optimizing such objective function only 

in a plane, while subsequent components are added in later steps. The fast algorithm of 

Rousseeuw and van Driessen (1999) for the method is implemented in library pcaPP 

of the R software package (Ihaka and Gentleman, 1996), which makes the method 

appealing for high-dimensional data. Other methods for dimension reduction include 

partial least squares, lasso, least angle regression or logic regression, which are not 

very popular in econometrics yet.

6.  Robust Classifi cation and Discrimination

We propose the minimum weighted covariance determinant (MWCD) estimator, 

which is a robust multivariate estimator based on the idea of down-weighting less 

reliable observations. Then a robust quadratic classifi cation method is proposed based 

on the MWCD estimator. 

The minimum covariance determinant (MCD) estimator is a high-breakdown estimator 

of multivariate location and scatter (Rousseeuw and van Driessen, 1999). It requires 

to choose the trimming constant h (n/2<h<n); while n-h observations are ignored 

completely, only the h remaining data points are used to compute the estimator. 

Particularly for the estimation of the multivariate location, the MCD estimator is 

defi ned as the trimmed mean with such n-h observations trimmed away, yielding the 

smallest possible determinant of the trimmed variance matrix. Such trimming involves 

the complete rejection of n-h data points, while the trimmed mean and trimmed 

variance matrix are computed as classical mean and variance matrix using only the h 

remaining observations. 

Let us consider p-dimensional data X1 , X2 , ..., Xn. We propose to defi ne the minimum 

weighted covariance determinant (MWCD) estimator as a weighted analogy of the 

MCD estimator, down-weighting less reliable data points. It is required to specify the 

sizes of the weights, w1 , w2 ..., wn and again we recommend to use linearly decreasing 

weights (5). For fi xed weights w1 , w2 ..., wn  the weighted mean WX  and the weighted 

variance matrix 

 (  )(  )T

MWCD i i i W i WS w X X X X      (12) 

can be computed. In our case we consider all possible permutations of the weights. 

We fi nd such permutation of the weights, which yields the minimal determinant of the 

weighted variance matrix. We defi ne the minimum weighted covariance determinant 

(MWCD) estimator of location as the weighed mean WX of the data with these optimal 

weights and the corresponding estimator of the variance matrix is the weighted variance 

matrix (10) with the optimal weights.
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Rousseeuw and van Driessen (2006) proposed an approximate algorithm for the 

computation of the MCD estimator. Now we propose a modifi cation for the computation 

of the MWCD estimator. We introduce weights to the algorithm and the complete 

rejection of data points is replaced by assigning these weights. The complete algorithm 

for computing the MWCD estimator will be now described.

Algorithm 1. 

(i) Initialize the value of the loss function as + ∞.

(ii) Randomly select an initial set of p observations. Compute the mean T and variance 

matrix C based on these p observations. 

(iii) Compute robust Mahalanobis distances for each of the observations X1 , X2 , ..., Xn 

in the form d(i; T, C) =  [(Xi – T)T C–1(Xi  – T)1/2 ] for each observation Xi . Sort these 

distances in ascending order. This determines a permutation π(1), π(2), ..., π(n) of 

the indexes 1,2, ..., n, which fulfi ls d(π(1); T, C)  ≤  d(π(2); T, C) ≤ … ≤  d(π(n); T, C).

Assign the weights to individual observations according to the ranks of the 

Mahalanobis distances. In other words, for example the observation Xπ(1) obtains 

the weight w1.

(iv) The loss function is evaluated as the determinant of the matrix C. If the loss is 

smaller than the previously obtained value, continue with step (v). Otherwise con-

tinue with step (vi).

(v) Store the values of the weights. Compute the weighted mean and weighted vari-

ance matrix using these weights. Continue with steps (ii), (iii) and (iv). This is 

repeated as long as the value of the loss decreases.

(vi) Repeat the steps (i) to (v) 10 000 times. The optimal weights are those which yield 

the minimal value of the loss function over all repetitions of steps (i) to (v).

In the algorithm, the permutation of the data arranges the data according to the 

ascending order of the Mahalanobis distances. Therefore observations with a small 

Mahalanobis distance obtain larger weights. 

Our aim is a robust classifi cation method based on the MWCD estimator. This method 

is inspired by Croux (2000) or Hubert (2005). A comparison of standard robust 

approaches to classifi cation analysis is given by Todorov and Pires (2007). The MCD 

estimator is a modifi cation of the LTS regression to the multivariate context, while 

the MWCD estimator corresponds to the LWS regression. Similarly with the LTS 

regression, the MCD estimator suffers from a high local sensitivity. On the other hand 

the LWS regression has a small local sensitivity (see Víšek, 2001), which motivates the 

usage of implicitly weighted estimators such as MWCD.

Let us consider multivariate data in a total number of J groups. We use the notation μj 

for the mean and Σj for the variance matrix of the data in the j-th group (j = 1,…, J). 

The quadratic classifi cation analysis (QDA) is based on the quadratic classifi cation 

function (see Johnson and Wichern, 1982)
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 Qj =  1 1 11
(log )

2

T T T

j j j j j j jX S X S X S X X S X        (13)

which is derived from the likelihood function of the multivariate normal distribution 

and estimates μj by 
jX  and Σj by Sj. Now we estimate the population characteristics 

μj and Σj by robust estimators, namely we replace them by the MWCD estimator of 

multivariate location jX , MVCD and variance matrix Sj , MVCD . This estimation is done 

separately in each group of data points. The robust estimation of the population 

characteristics allows us to defi ne the robust quadratic classifi cation method based on 

the MWCD estimator.

Defi nition 2. The quadratic MWCD-classifi cation assigns a new observation X to the 

j-th group, if the quadratic classifi cation function

 * 1 1 1

, , , , , , ,

1
log |

2

T T T

j j MWCD j MWCD j MWCD j MWCD j MWCD j MWCD j MWCDQ X S X S X S X X S X        (14)

is equal to max{Q1
*, …, Qj

*}. 

The classifi cation analysis performed on robust principal components by Croux (2000) 

or Hubert (2005) allows to preserve as much information relevant for the classifi cation 

as possible while reducing the computational complexity.

Here the new approach can profi t from the properties of the MWCD estimator, 

inherited from the idea of down-weighting less reliable data points. The estimator 

namely turns out to be very robust for highly contaminated data sets and effi cient for 

normal data without contamination, and at the same time robust also with respect to 

the local sensitivity. Therefore it overcomes an important drawback of locally sensitive 

LTS and MCD estimators and the MWCD estimator turns out to be one of implicitly 

weighted estimators with desirable properties.
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