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VALUATION OF CONVEXITY RELATED INTEREST RATE 

DERIVATIVES

Jiří Witzany∗

Abstract:
We investigate valuation of derivatives with payoff deined as a nonlinear though close to linear 
function of tradable underlying assets. Interest rate derivatives involving Libor or swap rates in 
arrears, i.e. rates paid at wrong time, are a typical example. It is generally tempting to replace the 
future unknown interest rates with the forward rates. We show rigorously that indeed this is not 
possible in the case of Libor or swap rates in arrears. We introduce formally the notion of linear 
plain vanilla derivatives as those that can be replicated by a inite set of elementary operations 
and show that derivatives involving the rates in arrears are not (linear) plain vanilla. We also study 
the issue of valuation of such derivatives. Beside the popular convexity adjustment formula, we 
develop an improved two or more variable adjustment formula applicable in particular on swap 
rates in arrears. Finally, we get a precise fully analytical formula based on the usual assumption 
of log-normality of the relevant tradable underlying assets applicable to a wide class of convexity 
related derivatives. We illustrate the techniques and different results on a case study of a real life 
controversial exotic swap.

Keywords: interest rate derivatives, Libor in arrears, constant maturity swap, valuation models, 
convexity adjustment. 
 

JEL Classiication: C13, E43, E47, G13

1. Introduction

We consider European type inancial derivatives that are deined as a one or a inite set 
of payments in speciied currencies at speciied times, where each payment is uniquely 
determined at the time it is to be paid as a function of a inite set of already known 
prices of the underlying assets. Forward transactions, forward rate agreements, swaps, 
and European options belong to this category. Many forward or swap like instruments 
can be simply valued using the principle replacing future unknown prices and rates by 
the forward prices and rates implied by the current market quotes and discounting the 
resulting ixed cash low with the risk-free interest rates. This works well for many 
derivative contracts including Forward Rate Agreements or Interest Rates Swaps. The 
future interest rates (Libor) can be replaced by the forward rates for the valuation 
purposes. However, it turns out that this principle is not exactly valid in the case the 
rates are paid at a “wrong” time or in a “wrong” currency like in the case of Libor in 
arrears (i.e., Libor paid at the beginning and not at the end of the interest rate period for 
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which it is quoted) or Quanto swaps (where the Libor quotes are taken in one currency 
but paid in a different currency). Many practitioners still use the forward rate principle 
as a good approximation for valuation of such products, while others use some kind of 
a convexity adjustment formula. However, one may still ask the question why the rates 
paid at a wrong time could not be somehow transferred, e.g. using forward discount 
factors, to the right payment time? Another question is whether and why the popular 
convexity adjustment formula is correct and how far it is from the best valuation  
(if there is any)? We will show elementarily that the answer to the irst question is no. 
Then we will give an overview of adjustment formulas used in practice and propose 
a new one arguing that it is more precise. The impact of different adjustment formulas 
will be illustrated on a real life example.

2. An Exotic Convexity Related Cross Currency Swap – A Case Study

In March 2003 a large Czech city1 entered a cross currency swap with a bank intended 
to hedge the currency and interest rate risk of ix coupon bonds issued in EUR. Details 
of the transaction are given in Table 1.

When the City Assembly and its Finance Committee have been informed about 
details of the transaction some of the members questioned the complex and for the 
needs of the City inappropriate structure of the swap as well as its market parameters. 
Indeed the irst estimates have shown that the market value of the transaction could be 
quite negative from its very inception. This led to a controversy between the proponents 
and critics of the transaction. 

One of the arguments of the swap proponents was the statement that the only 
way how to really determine whether the swap was proitable or loss-making would 
be to wait until its very maturity (i.e. 10 years) and then to add up all the cash lows. 
A resolution in this sense has been even approved by the Controlling Committee, 
which has investigated various aspects of the transaction and of the bond issue. Even 
though such a conclusion is fundamentally wrong there is some wisdom in it in the 
sense that determination of a precise market value at the start and during the life of the 
swap is indeed a dificult task obscured by a multitude of possible valuation methods 
and insuficient market data. 

Another line of argumentation of the swap supporters has been the statement that 
the unknown loat component of the swap payments, the spread = IRS10 – IRS2 deined 
as the difference between the 10-year and 2-year swap rates quoted at the time of 
the annual payments in the years 4-10, could be estimated as the average from the 
past which happened to be around 1.5 %. Hence if the future unknown spreads are 
replaced by 1.5 % the interest rate paid by the city is estimated at 4.05 %, which is less 
than the rate 4.25 % paid by the bank. Even though such a valuation method is again 
fundamentally wrong (recalling the notorious statement saying that past performance 
is not a guarantee of future proits) it is quite appealing to the laic public.

 

1 The counterparties of the swap were the City of Prague and Deutsche Bank A.G., Prague Branch. 
The information has been made public through an information paper provided to the Prague City 
Assembly.
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Table 1
Details of the Cross Currency Swap, March 2003

Date/Period
Counterparty A  

(The City) pays:

Counterparty B (The Bank)

pays:

Initial Exchange 19/3/2003 EUR 168 084 100 CZK 5 375 527 500

Fixed Amounts Annually

4.25 % from the amount 
of EUR 170 000 000 in 
the Act/Act Day Count 
Convention

Float Amounts

Annually, 
years 1-3

3.95 % from the amount of CZK 
5 389 000 000 in the Actual/360 Day 
Count Convention

Annually, 
years 4-10

(5.55 % - spread) from the amount of 
CZK 5 389 000 000 in the Actual/360 
Day Count Convention, where the 
Spread is calculated as the difference 
between the 10-year swap rate minus 
2-year swap rate quoted by reference 
banks 2 business days before the 
payment

Final Exchange 19/3/2013 CZK 5 389 000 000 EUR 170 000 000

 

The critics of the swap have on the other hand obtained a specialized consulting 
irm valuation according to which the market value of the swap using the trade date 
rates has been CZK -262 million, i.e. quite distant from a normal level corresponding 
to a transaction entered at market conditions. The city has ordered other valuations 
from other institutions. One study (from a top-four consulting irm) has shown the 
market value at the trade date to be even CZK -274 million, another (from a private 
economic university) just said that it was really dificult to determine any market 
value, and another unoficial indicative valuation provided by a bank came up with 
the market value of -194 million. The irst two valuations (CZK -262 million and  
CZK -274 million) were based on the principle where the future unknown swap 
rates are replaced by the forward swap rates implied by the term structure of interest 
rates valid at the valuation date. The same technique with a similar result (CZK -280 
million) is used for example in the textbook on derivatives by Jílek (2006) where the 
swap is valued in detail. We will denote this approach (i.e. straightforward replacement 
of future unknown rates with the forward implied rates) as the Valuation Method No. 1. 
The method of the third valuation (CZK -194 million) has not been publicly disclosed 
in detail.
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We will use this speciic transaction as a case study to illustrate that the straight-
forward rate replacement method is in fact incorrect, though not too far from a precise 
analytic valuation that we shall obtain and that will lie somewhere between the 
valuations mentioned above.

3. Derivatives Market Value

It is generally assumed that every derivative has a uniquely determined market value 
at any time from its inception to the inal settlement date. International Accounting 
Principles (IAS 39) require that the fair (market) value of derivatives is regularly 
accounted for in the balance sheet and/or proit loss statement. The principles, however, 
do not say how the fair value should be exactly calculated in speciic cases.

The market value of a derivative can be observed if there is a liquid market where 
the contractual rights and obligations are transferred from one counterparty to another 
for a price that is publicly quoted. This is essentially only the case of exchange-traded 
futures and options. Exchange traded futures (including their prices) are reset daily 
together with daily proit loss settlement on a margin account. The cumulative proit 
loss can be considered as the market value of the original futures position. On the other 
hand options are traded for their market premium representing the actual observable 
market value.

The market value cannot be directly observed for Over-the-Counter (OTC) 
derivatives that are generally not transferable and in many cases are entered with 
speciic parameters that make comparison to other transactions dificult. Some OTC 
derivatives can, however, be reduced using a few elementary operations to a ixed cash 
low and its present value then can be taken as the correct market value (disregarding 
counterparty credit risk). The traders sometimes call these types of derivatives ”plain 

vanilla“. More complex OTC derivatives with a liquid market can be also compared 
during their life to other quoted instruments that usually allow reducing the outstanding 
transaction to a ixed cash low. As any new transaction conducted at market conditions 
has its market value close to zero, the present value of the difference cash low is 
then a good estimation of the market value. Hence, the biggest problem is posed by 
derivatives that are not plain vanilla and lack a liquid standardized market like our 
case study exotic swap. There is a philosophical question what the right method for 
valuation of such exotic transactions is.

To show that derivatives involving Libor or swap rates in arrears are not in fact 
plain vanilla we irstly need to introduce the notion more formally. As we said in 
the introduction, we will restrict ourselves to derivatives that can be deined as inite 
sequences of payments at speciied times where each payment is determined as a function 
of market variables observed at or before the time of each of the payments. Formally, 
each single cash low can be expressed as , ,C Curr T=C  where T is the time of the 
payment 1 1),...,( ( ))( n nVV t tC f= in the currency Curr , the values 1 1),.. (( ., )n nV tV t are 

observed market variables (asset prices, interest rates, foreign exchange rates, credit 
spreads, equity indexes, etc.) or other indices (weather, insurance, etc.) at times it T≤ , 
and f is a function. Forward Rate Agreements or European options can be deined in 
this way by a single payment. Financial derivatives with more payments like swaps 
can be formally deined as ,... },{D = 1 mC C . Given two derivatives 1 ,... },{D = 1 mC C
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and 2 ,... },{D = 1 mQ Q it is useful to deine the sum 1 2D D+ in a natural way as the 
sequence of the cash lows iC and jQ , or jiC Q+ in the case when the payment times 
coincide.

When valuing the derivatives we take the usual assumption of being in an idealized 
inancial world where all inancial assets can be traded, borrowed, and lent with 
perfect liquidity, without any spreads, taxes, or transaction costs, and where arbitrage 
opportunities do not exist. We will use risk-free interest rates ( , )R Curr t in continuous 

compounding for maturity t in the currency Curr. Normally we drop the parameter 
Curr as we will focus mostly on single (domestic) currency derivatives. 

A number of derivatives can be valued using the following three elementary 
principles:

(3.1) If ,... },{D = 1 mC C is a derivative consisting of ixed payments at
 1 mT T< < then the market value 

 

( )

1

( ) i i
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(3.2)  If ,{ }D = 1 2C C  is a pair of cash lows representing a money market deposit 
transaction, i.e. the principal 1C is determined at 1T  and 2C  equals to 1C−  and 

the accrued market interest set at 1T  (in practice usually two business days 
before) for the period lasting from 1T  to 2T , then

 MV(D) = 0. 
(3.3) If 1,..., nD D are derivatives and 1 nDD D= + + then

 The three principles are already suficient to value a number of “plain vanilla” 

interest rate derivatives. It is straightforward to generalize the principles in order to 
value simple derivatives with other underlying assets.

For example a 1 2T T× forward rate agreement contract paying a ixed rate FRAR on 

a nominal N is represented by the single cash low 

                                             

,
 

where MR  is the reference market rate (usually Libor) observed at 1T for the period from 

1T to 2T and τ is the time factor calculated in an appropriate day-count convention. The 
derivative 0 { }D = C with single-variable cash low settled at 1T can be transformed 
using the principles (3.2) and (3.3) to a ixed cash low. While we let the upper case R

denote in general an interest rate p.a. to simplify our formulas we will sometimes use 
the lower case ·r Rτ= for the time adjusted interest rates. Set
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Then  0 1 ·({ )}FRA MD D N r r+ = − is paid at 2T
 
and

 0 1 2 ·({ )1, }FRAD D D D N N r+= + + = −  is a ixed cash low at 1T and 2T .

The transactions 1D and 2D  are both of the type (3.2), i.e. money market deposits, 
hence  

 1 2(( ) 0) MVM DV D = =  and so

 

 

2 2 1 1( ) ( )
0( ) ( ) (1 )·

R T T R T T

FRAMV D MV D N R e N eτ − ⋅ − ⋅= = ⋅ + ⋅ − ⋅ .

Thus the market value of an FRA equals to zero if the interest rate FRAR  equals to the 
forward rate implied by the current yield curve:

(3.4) )1(
1

1122 )()( −=
⋅−⋅ TTRTTR

FRA eR τ .

A plain vanilla interest rate swap contract 0I receiving the ix and paying the loat 
interests paid in the same periods and the same day-count convention can be deined 
as a series of cash lows 1· · (( ) , )i fix M i iNC TR R Tτ −= − paid at iT with MR being the 
reference market rate observed at 1iT − for the period 1,[ ]i iT T− . It turns out that using 
the FRA contracts the IRS cash low can be transformed to a ixed cash low. For 
each iC it is suficient to use the 1i iT T− ×  FRA with the same nominal in the form 

0 1 ·({ · })i M FRAF D D N R R τ= + = − paid at iT as above. Then the modiied cash low of 
0 iI F+ paid at iT  is ixed as 

                                                                                                  
. 

Hence if 0I  is a plain vanilla IRS then 0( ) ( )MV I MV I= where 
0 1 nI FI F += ++   is a combination of the original swap and a series of FRAs for 

each loat interest payment. As the FRA interest rates are applied at market conditions 
we have 1 ( ) 0( ) nM F MVV F== = . The cash low I results from 0I replacing the 
unknown loat payments by forward interest rates implied by the current term structure. 

Similarly it can be shown that the original IRS cash low can be transformed using 
the principles (3.1)-(3.3) to the ixed cash low paying the irst ixed loat interest plus 
the nominal N at 1T and on the other hand receiving the ix interest payments plus the 
nominal N  at maturity nT . Thus at the start date of any market IRS transaction the 
following must hold:
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4. Plain Vanilla Derivatives

In both cases given an FRA or IRS derivative transaction D  in the previous section we 
have in fact found a inite number of elementary derivatives 1,..., mD D of the type (3.1) 
or (3.2) so that 1 mD D+ + is a replication of D , i.e. 1 mD D D= + + . 

Deinition: A derivative D  will be called linear plain vanilla if it can be replicated at 
its start date as 1 mD D+ + where 1,..., mD D

 
are

 
of the type (3.1) or (3.2).

We are using the adjective “linear” since ordinary European options (with 
a nonlinear payoff) cannot be certainly statically replicated using transactions of the 
type (3.1) or (3.2) but are still often called “plain vanilla”.

We ask the question how broad is the class of linear plain vanilla derivatives. 
Besides the FRA and IRS does it also contain other swaps like swaps with Libor 
or swap rates in arrears? Note that the operations of type (3.2) allow moving even 
a future interest payment forward and backward so the positive answer cannot 
be simply ruled out. To ind market values of swaps with Libor in arrears (see 

e.g. Li, Raghavan, 1996) it is suficient and necessary to value in general the cash 
low 1 2 1 2 1 2, )( ( , )· ( , )M MC r T TT R T T Tτ== payable at 1T  (instead of 2T ) where 

1 2,( )MR T T  is the market rate (Libor) observed at 1T  for the period lasting from 1T  

to 2T . Notice that if Mr was discounted to / (1 )M Mr r+ then the cash low could be 
moved using an operation of type (3.2) to the ordinary time 2T  and valued in the same 
fashion as in the case of FRA, i.e. replaced with the forward rate and discounted to 
time zero. We will show elementarily that the missing discount factor 1/ (1 )Mr+ in 

the cash low C is in fact essential.

Proposition 1: The Libor in arrears 1 2 1,{ ( }),M TL r TT= is not a linear plain vanilla 
derivative.

Proof: Assume by contradiction that L can be expressed as a sum of derivatives of 
the type (3.1) or (3.2). Since any sum of ixed cash lows of type (3.1) is again a ixed 
cash low we can assume that 1 nPL F P= + + +  is a sum of one ixed cash low F
and initely many cash low pairs { },1 2C C of the type (3.2). Recall that by deinition 

1 1,C t=1C  can be any cash low determined by a function of information available 
at time 1t and 2 1 1 2(1 ( , ))MC r t tC= + payable at 2t is equal to 1C plus the accrued 
market interest observed at 1t . Consequently 1 2,( )Mr T T  must be in the form

(4.1) 1 2 1
1 1

( , ) (1 ( , ))
m k

M i M i j

i j

r T T a b r t T c
= =

= + ⋅ + +∑ ∑ ,

where a  is a constant amount known at time 0, 1 1mtt T<< < , nominal amounts ib
are determined at it , and jc are nominal amounts of pairs (deposits) starting at 1T . Note 
that the irst two parts on the right hand side of  are determined at or before mt , hence 
the sum of jc equals to 1 2, )(Mr T T A−  where A is a value already determined at the 
time t

m
<T

1
. The equation 1 nPL F P= + + +  must hold for all interest rate scenarios 
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so we may restrict ourselves to the scenarios where all rates 1 2,( )Mr t t for 1 1 2T tt< <
are forward implied by the rates 1,( )Mr T t for 1t T> . Under this assumption when all 
the rates from 1T on can be compounded it is easy to show that for any pair P of type 

(3.2) with payment times 1 1 2 MTtT t< <≤ we can ind two pairs 1Q and 2Q of the 
type (3.2) with payment times at 1, Mt T and 2 , Mt T respectively so that 1 2P QQ= + . 
Consequently with respect to this set of interest rate scenarios we may decompose all 

iP  with the irst payment time 1it T>  and the second being some large MT . Hence 
we may assume without loss of generality that for all such P

i
 the second payment 

time is some ixed 2MT T> . Consider such a pair with the irst payment at 1it T> . 
We may certainly assume that there is only one pair { , (1 ( ))},i i i M i MP C C r Tt= − +
with payment times it and MT  but in addition there could be other pairs kP with the 
irst payment time 1kt T<  and the second at the it . The sum of all the cash lows at it
in the decomposition 1 nPL F P= + + +  must be identically zero hence it follows 
that the iC is a value determined already before the time 1T . Moreover the cash low 

1 2( , )j Mc r T T A= −∑  is now also discounted to MT . Finally the cash low at MT
must be also identically equal to zero:

(4.2) , 1 2 10 (1 ( )) ( ( , ) ) (1 ( , ))
i M i M M m M

C r t T r T T A r T T D= ⋅ + + − ⋅ + +∑ .

The irst sum in (4.2) is taken over all iP  with the irst payment at 1it T> and the 
second at MT . The second expression corresponds to the pair with payment times at 

1, MT T , and D is the sum of a constant payment and of all the inal payments from 
pairs starting at some 1t T< and ending at MT . This equation cannot clearly hold as 
the values  an  , d,iC A D have been determined before 1T  and after that time we admit 
e.g. all the interest rate scenarios with 1),(

)(

21
12 −=

−ttR

M ettr  for arbitrary 0R >

and 2 1 1t t T> ≥ .

Note that the equation (4.2) could hold if the cash low 1 2( , )M Tr T at 1T was replaced 
with the discounted interest rate , 1 2 1 2( , ) / (1 ( , ))M disc M MrT Tr r T T+= , for example 

       ,1 ( 1)(1 ) 0M disc Mr r+ − + = .

A constant maturity swap is a swap where one counterparty pays to the other ixed 
interest rate and the other pays the swap rate with a constant maturity M observed 
always at the time (or right before) of any payment. Again to value constant maturity 
swaps it is necessary and suficient to value a single swap rate in arrears payment 

,Ts T〈 〉 where the market rate is determined at T for interest rate swaps with maturity
M . Here we assume a liquid IRS market so that the reference rate Ts follows the 
equation(3.5). Similarly to swaps with Libor in arrears we hypothesize that constant 
maturity swaps are not (linear) plain vanilla.

One may want to extend the type (3.2) operations with cash lows corresponding to 
swaps starting at T , ending at T M+ , and with the market swap rate Ms observed at 
T for that maturity. However s

M
 is by the equation (3.5) a function of the interest rates 

known at the time T and so the swap cash low can be replicated as combination of the 
elementary operations of the type (3.1) and (3.2).
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Proposition 2: The swap rate in arrears , }{ TsS T〈 〉= is not a linear plain vanilla 
derivative.

Proof: If by contradiction 1 nPS F P= + + +  then we may use the same 
argumentation as in the proof above ending up with the equation

(4.3) 0 (1 ( , )) ( ) (1 ( , ))
i

i M i M T M M

t T

C r t T s A r T T D
>

= ⋅ + + − ⋅ + +∑ .

This equation cannot hold in all scenarios when the instantaneous interest rate is set 
to an arbitrary 0R > from the time T on, so that Ts R≈ , ( )( , ) 1MR T t

M Mr t T e
−= − , 

and the values  an  , d,iC A D have been determined before T and so are independent 

on R .

5. Expected Value Principle

Even though we have proved that the swaps with loat rates in arrears cannot be 
replicated in a straightforward way we might still try to use the Expected Value 
Principle to show that the future unknown interest rates may be replaced with the 
forward rates and discounted to time 0 with the risk-free interest rates.

The Expected Value Principle or rather the Risk Neutral Valuation Principle says 
that if tV is the value of a derivative at time t with payoff TV  paid at time T and 

determined as a function of prices some underlying assets then

(5.1) [ ]TT VETPV ),0(0 = ,
where the expectation is taken in the world that is forward risk neutral with respect to 
the ( , )P t T , i.e. time t value of a unit zero coupon bond maturing at T (see for example 
Hull, 2006, or Hunt, Kennedy, 2000). An ingenious argument proving the principle is 
also based on the replication principle, however, in ininitesimally small time intervals 
and dynamically readjusted. It has been used irst by Black and Scholes (1973) to value 
stock options under the assumptions of constant or at least deterministic interest rates. 
This assumption must be relaxed in order to value interest rate derivatives. This can be 
achieved using the value of the money market account or ( , )P t T as the numeraire. For 
any numeraire g there is a measure so that for any derivative f with the same source 

of uncertainty the process 
f

g
is a martingale, in particular 

(0) ( )
(0) ( )T

f f T
E

g g T

 
=     (see 

Málek, 2005 or Harrison, Pliska, 1981). The measure (or the world) is called forward 

risk-neutral with respect to the numeraire g . Speciically if ( , )g P t T=  then

 

0

(0, ) ( , )
T

T

V V
E

P T P T T

 
=    ,

which implies (5.1) as ( , ) 1P T T = . The equation holds for all derivatives, including 
those that depend on interest rates. The world is risk neutral with respect to ( , )P t T if 

the return of any asset from t to T equals to the return of risk free zero coupon bonds 
maturing at T . On the other hand, if we set g equal to the value of the money market 
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account then 
0

( ) exp( ( ) )
t

g t R s ds= ∫  and it follows

(5.2) 0
0

ˆ exp( ( ) )
T

T T
V E R s ds V

 = − ⋅  ∫ ,

where the expectation is taken in the world that is forward risk neutral with respect to 
the money market account. In this world the return of any asset in a time period equals 
to the return of the money market account.

Going back to the issue of valuation of swaps with rates in arrears we prefer the 

equation (5.1) where the discounting is taken out of the expectation operator (see also 
Pelsser, 2003, Musiela, Rutkovski, 1997, or Gatarek, 2003). The idea to replace the 
future unknown rates with the forward ones would still be applicable if we were able 
to show that the expected value [ ]),( TTrE MT

′  equals to the forward rate. However, it 
follows that there is a difference between the two values, the former being greater than 
the latter, and so an adjustment is needed if the forward rates are to be used as a proxy 
of the expected values.

6. Convexity Adjustments

Estimating the expected value of a Libor in arrears [ ]),( TTrE MT
′  one has to realize that 

an interest rate itself is not a tradable asset. If tA denotes the time t  price of a tradable 
asset (paying no income and with zero storage cost) then its time 0 non-arbitrage 
forward price (0)F

TA must solve the equation (0, ) [ (0) ] 0F

TT TP T E A A− = , hence

(6.1) [ ](0)F

T T TA E A=

If we set ( , ')TA P T T= then 1
11),( −=

−
=′

TT

T
M

AA

A
TTr  is a nonlinear function of

TA . Recall that in general if g is a strictly convex function and X a non-trivial random 

variable (i.e. not attaining only one value with probability 1) on a probability space 

then by Jensen’s inequality [ ] [ ]( ) ( )g E X E g X<  . Since 1
1)( −=
X

Xg is strictly 
convex for 0X >  and the random variable 0TA > is nontrivial we get

(6.2) [ ]( ) [ ] [ ]
1 (0)(0, , ) ( ) ( , )

(0)

F

T
F T T T T T MF

T

A
r T T g E A E g A E r T T

A

−′ ′= = < = .

The difference between the right hand side and left hand side of the strict inequality is 
the convexity adjustment that we need to calculate or at least estimate if the forward 
rate (0, , )Fr T T ′ is to be used as a proxy for [ ]),( TTrE MT

′ . 
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On the other hand note that if the interest rate ( , )Mr T T ′ is payable at 'T and if we use 

( , ')P t T as the numeraire, then 
( , ) ( , )( , , )

( , )F

P t T P t T
r t T T

P t T

′−′ = ′  is a martingale and so 

       
[ ] [ ]' '(0, , ) ( , , ) ( , )F T F T Mr T T E r T T T E r T T′ ′ ′= = .

One popular way to estimate the convexity adjustment discovered by Brotherton-
Ratcliffe, Iben (1993) is to use the Taylor expansion of the inverse function 1f g −= . 
If ( )A f r= with Mr r= and dropping the parameters T and 'T we have

Neglecting the terms of the third and higher order and applying the expectation 
operator we get

 [ ] [ ] 210 ( )( ) ( ) ( )
2

F

F F F F
E A A f r E r r f r E r r′ ′′= − ≅ − + ⋅ −    and so

(6.3)      [ ] 2 ( )1

2 ( )
F

F r

F

f r
E r r w

f r

′′− ≅ − ⋅ ′ ,

where we have used one more approximation [ ]22 )()( Fr rrErVarw −≅= . In the case 

of Libor in arrears 
r

rf
+

=
1

1)( the convexity adjustment estimation takes the simple 

form
F

r

r

w

+1

2

. Normally 2
rw is expressed as 

22
Fr rT ⋅⋅σ where rσ is an estimation of the 

volatility of the Libor rate from historical data. The formula has been also extended 

by Benhamou (2000a, 2000b) in the framework of time dependent deterministic 
volatility. It seems that performance of the convexity adjustment estimation might be 
simply improved if the Taylor expansion was applied directly to the function ( )g A  

(see Henrard, 2007). However we will get a closed formula under the assumption of 
log-normality of A at the end of this section.

Popular Convexity Adjustment Formula for Swap Rates in Arrears

Regarding swap rate in arrears we need to ind [ ]sET  where ( , )M Ts s T M+=

is the market swap rate observed at T for swaps of length M and the expectation 
is taken in the world that is again forward risk neutral with respect to ( , )P t T . 

If ( , )P P T T M= + and 
i

m

i

iTTPA τ⋅=∑
=1

),( , where 1,..., mT T T M= + are the ixed

interest rate payment times and 1( , )i i i iT Tτ τ +=
 

the time adjustment factors, 

then according to (3.5) the swap rate
A

P
APgs

−
==

1),( .  P and A are prices 

of tradable assets at time T.

21( ) ( ) ( )( ) ( )( )
2

F F

F F F F
A A f r f r f r r r f r r r′ ′′− = − = − + − +
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(A corresponding to a portfolio of zero coupon bonds) and so according to (6.1) the 
forward prices of P and A at the time T calculated at 0t = equal to their expected 
value in the world that is ( , )P t T forward risk neutral: [ ]F

TP E P= , [ ]F

TA E A= . 

Since the function ( , )g P A is strictly convex in A analogously to  we get the inequality 
[ ]F Ts E s< . To get a simple convexity adjustment formula in the style of (6.3) we 

need to condense the two variables into one. According to Hull (2006) let B be the 
market price quoted at time T of the bond with maturity at T M+ , unit nominal 
value, and ixed coupon rate Fs  paid at 1,..., mT T . If y is the market yield of the bond 
then ( )B f y= and as s  is a proxy of y  we can use the approximation ( )B f s≅ . 
Applying (6.3) we obtain

(6.4) [ ]
D

C
Ts

sf

sf
wssE s

F

F
sFT

2
0

22

2
1

)(

)(

2
1 σ=′

′′⋅−≅− ,

where sw is the standard deviation of Ts , sσ the volatility of s , C convexity, and 
D the duration of the bond at Fy s= . When this formula is used for valuation of 
a constant maturity swap we will call the approach Valuation Method No. 2.

Modiied Single-variable Taylor Expansion Based Convexity Adjustment

An alternative approach is to consider directly the swap rate to be a function of the 
bond price, ( )s g B= . Taking the Taylor expansion of the function at FB we get

Now let us apply the expectation operator and the fact that [ ] F

TE B B= to derive 
hopefully a little bit more precise convexity adjustment formula 

(6.5) [ ] [ ]
( )3

22

)(

)(

2
1)()(

2
1

F

F
B

F

T

F

FT
sf

sf
wBBEBgssE ′

′′−=−′′≅− .

The formula is consistent with (6.4) as )( FsB sfww ′⋅≅  however in derivation of 
(6.4) we have taken one more approximation step compared to (6.5). Consequently we 
expect this formula to lead to a better valuation of a given constant maturity swap that 
we will call Valuation Method No. 3.

Two-Variable Taylor Expansion Based Convexity Adjustment

The estimation  can be further improved if we return to the two-variable function 

expressing the swap rate, 
A

P
APgs

−
==

1),( . Let us expand again the difference 

Fs s− using the Taylor formula

21( ) ( ) ( )( ) ( )( )
2

F F F F

F F
s s g B g B g B B B g B B B′ ′′− = − = − + − +

2

2

1( , )( ) ( , )( ) ( , )( )
2

1 ( , )( ) ( , )( )( )
2

F F F F F F F F F

F P A PP

F F F F F F F

AA PA

s s g P A P P g P A A A g P A P P

g P A A A g P A P P A A

− = − + − + − +
+ − + − − +
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Neglecting the third and higher order terms and taking the expectation we get

(6.6) [ ] APPAAAAPPPFT CovgwgwgssE ,
22

2
1

2
1 ⋅++⋅≅− ,

where the partial derivatives are taken at the forward values FP and 
FA . Applying the 

formula on 
A

P
APgs

−
==

1),(  we inally get

(6.7) [ ]
( ) ( )2

2
3

1
F

AP
AF

F

FT

A

ww
w

A

P
ssE

⋅⋅
+

−≅− ρ
.

Compared to (6.5) we have eliminated one more approximation step and derived 
a presumably better convexity adjustment formula that need to estimate not only 
volatilities of the prices P and A but also their correlation ρ . Pricing of constant maturity 
swaps obtained using the formula (6.7) will be the called Valuation Method No. 4.

Multi-Lognormal-Variable Based Valuation Formula

Finally we will use the particular form of the function ( , )g P A to derive a closed 
formula for [ ( , )]TE g P A  under the assumption of lognormality of the variables P

and A . Recall (see e.g. Aitchinson and Brown, 1996) that if X is a lognormally 

distributed random variable and ),(ln
0

smN
X

X ≈



is normal with mean m and 

standard deviation s then the expected value [ ] 2/
0

2smeXXE += and the variance

( )1)(
222

0
2 −= sm eeXXσ .
Let us assume that (0, , )P P T T M= + and (0, , )A A T T M= + are jointly 

lognormally distributed in the measure that is forward risk neutral with respect to
( , )P t T :

 

),
2

(ln
2

TTN
P

P
P

P

F
σσ−≈


 ,

 

),
2

(ln
2

TTN
A

A
A

A

F
σσ−≈


 ,

so that [ ] FE P P= and [ ] FE A A= . If P and A are lognormal then clearly
A

1
and 

A

P

are lognormal as well since

                                                                                      and

PA

1n

1n

1n

1n 


≈


−=
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
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Using the relationship between the expected value and volatility of a lognormal 
variable and its exponential power we get

F

TFT

T

F

F

F

TT

TTT
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e
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Consequently under the lognormality assumption the precise formula for the convexity 
adjustment is

(5.8) [ ]
( ) ( )

F

TFT
F

T
A

ePe
ssE

PAAA 11
)2( 22 −⋅−−

=− − σρσσσ
.

To apply the formula we need to estimate the stochastic volatilities ,P Aσ σ , and the 
correlation ρ . The valuation of a constant maturity swap using the formula  will be 
called Valuation Method No. 5.

The approach could be generalized to derivatives with payoff of the form

                                                         ,

where 1,..., kA A are prices of some underlying assets observed at or before the payoff 
time T and p is a polynomial. If we assume that 1,..., kA A are jointly lognormally 
distributed then g can be similarly decomposed into a sum of lognormal variables. 
The expected value of each part and the sum can be then expressed in an analogous 
way as above.

Example: Consider for example a Quanto Pribor in Arrears derivative denominated 
in CZK and paying in one year the actual 1Y Pribor in arrears multiplied by the annual 
appreciation of EUR with respect to USD. Similar products do appear in the market. 
The payoff can be expressed as 

where (1,2)P is the value of a one-year-to-maturity zero coupon bond at year 1, E
the exchange rate of EUR in CZK, U the exchange rate of USD in CZK at year 1, and 

0E , 0U  the initial exchange rates. If ,P E and U are jointly lognormally distributed 

with respect to the measure that is forward risk neutral to ( ,1)P t then as above 
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and 
U

E are lognormal and we can express 


 −
U

E

PU

E
E in terms of the volatilities and 

correlations of P, E and U. To simplify the calculation we may set 
U

E
S =  that is also 

lognormal in the chosen measure. If

                                                 ,

                                                 ,

so that  and ] [ ][ F FEP S SE P = = . Then assuming joint lognormality of P and S we 
get:

                                                                                                                           , and

where ,USD EURR R are one year interest rates in the two currencies and ρ is the 
correlation between /EUR USDS S= and (1,2)CZKP P= .

7. Valuation of the Case Study Exotic Swap

We have identiied ive possible methods for valuation of swaps involving swap rates 
in arrears like the one described in Section 2. The methods may be summarized as 
follows:
1. Replace the future unknown rates with the forward rates implied by the current 

yield curve without any adjustment and discount the resulting cash low forecast.
2. Add an adjustment based on volatilities of the swap rates using the formula (6.2).
3. Add an adjustment based on volatilities of bonds with coupons set at the level of 

the forward swap rates using the formula (6.3).
4. Add an adjustment based on a more precise formula (6.7) involving volatilities and 

correlations of zero coupon bonds and annuities.
5. Calculate the expected swap rates using the closed formula (6.8) based on volatili-

ties and correlations of zero coupon bonds and annuities.
We have performed the valuation with market data as of March 12, 2003. To apply the 
Valuation Method No. 1 we have used the same swap rates as some of the consulting 
irms mentioned in Section 2 (see Table 2). The used EUR/CZK exchange rate is 
31,665.
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Table 2
The Swap Rates Used in the Valuation Method No. 1

The swap rates are available up to 20 years maturity and so the mid rates can be 
used for a relatively precise construction of the discount rates, and forward rates up 
to the maturity date of the swap. But to calculate convexity adjustments using the 
Methods No. 2–5 we need to plug in certain volatilities, or even correlations of the 
underlying assets. It would be optimal if we could use market quoted forward-looking 
volatilities on bond options, swaptions, caps, or caplets. However the market with 
interest rate derivatives has not been suficiently developed so far (see e.g. Vojtek, 
2004 or Mičulka, 2007) and all we can do is to use historical data to make certain 
estimations. Again we could use a number of different methods leading to a multitude 
of slightly different results in each of the approaches 2-5. The estimations may be 
based on different lengths of the historical data, may use different weights, different 
assumptions on the stochastic processes etc. 

We have used historical swap rates provided by Reuters that start in the case of 
CZK in 1998. The quality of data is not very good (missing time periods) until 2000 
due to low liquidity and the inancial crisis in late nineties. This is a reason to take only 
a shorter history of equally weighted data. 

Another key issue is lack of historical swap rate quotes with maturities beyond 
10 years before 2004. For example to estimate the standard deviation of the market 
value of the 10 year annuity (5,15)A A= starting in 5 years and maturing in 15 years 
(March 12, 2003 corresponds to 0t = ) observed in 5 years we could use essentially 
two basic approaches. One would be just to calculate the historical volatility of 

(0,10)A . However, this approach clearly underestimates the standard deviation of 
A(5,15) since we are modelling volatility of the price of a ixed cash low maturing 
15 years from now hence its volatility will be deinitely higher at the beginning than 
at the end of the modelled 5 years period. Another possibility is to model the process 
for the present value of the annuity calculated with the interest rates known at time t , 

( ) ( ,5,15)A t A t= , as Adt dzdA Aµ σ+=  with a positive drift µ and a volatility σ
that is not constant. To eliminate the drift we will rather replace ( )A t with the forward 
value of the annuity calculated at time t , i.e. set ( ) ( ,5,15)FA t A t= . The volatility 
then still depends on the time t (empirically it is decreasing with t as there is less 
uncertainty with a shorter time 15 t−  to maturity of the observed instrument) and 
must be estimated at least for the years 1 to 5 taking the quadratic average volatility as 
the input into the convexity adjustment formula. So we may use the historical data to 
estimate the volatilities 1 5,...,σ σ of prices of (5,15)FA , (4,14)FA ,…,and (1,11)FA . 

The estimation of Aσ then will be ( ) 5/2
5

2
1 σσ ++ . To calculate historical prices 

of (10,20)FA we need to extent the yield curve up to 20 years maturity. The standard 
way to do this is to assume that the swap rates beyond 10 years are constant and equal 
to the 10 years swap rate. The extrapolation obviously signiicantly distorts the result 
but that is probably all we can say unless we apply a dynamic interest rate model as e.g. 

Maturity 1 2 3 4 5 6 7 8 9 10 12 15 20

EUR 2,35% 2,42% 2,67% 2,93% 3,18% 3,39% 3,57% 3,74% 3,88% 4,00% 4,00% 4,00% 4,00%

CZK 2,18% 2,32% 2,55% 2,79% 3,04% 3,26% 3,46% 3,64% 3,79% 3,91% 4,10% 4,29% 4,44%
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in Mercurio, Pallavicini (2006) or Hagan (2003), which could be subject of another 
study on the issue of interest rate model calibration in an emerging market with limited 
historical market data. Although there are many approaches we could use, we have 
decided to choose just one: 

Use 300 business days historical mid swap rates quotations in CZK.
Extrapolate the rates beyond 10 years maturity with the 10 year swap rate.
Use just the historical 10 and 2 years maturity swap rates to estimate the volatilities 

of the future swap rates.
Use the data with equal weights to calculate historical volatilities of forward values of 

the cash lows ( ,P A  and B ) for individual years starting from the time zero to the loat 
payment date. The inal volatility estimation is then calculated as a quadratic average.

Correlations are calculated in the same way but taking a standard average instead 
of the quadratic one.

Table 3
The Market Valuations Using All Five Methods

The market valuations applying the ive methods shown in Table 3 indicate that 
the results differ but remain within the same order. The dispersion would be probably 
wider if we used also different volatility/correlation estimation methods. The popular 
convexity adjustment (2) seems, according to our analysis, to underestimate the most 
precise two-variable adjustments (4) and (5) while the improved single-variable 
adjustment (3) remains somewhere in between.

8. Conclusion

The paper has been motivated by a real life exotic swap transactions which was valued 
by inancial practitioners in the range of CZK –194 to –280 million at the trade date of 
the transaction. Non-practitioners have assigned a positive value to the swap or even 
claimed that there is nothing like the trade date market value. International Accounting 
Standards require banking and non-banking subjects to account for the market value 
of derivatives on a regular basis and such dispersion of possible market values and 
opinions seems to be puzzling.

The irst part of the paper rejected the hypothesis that swaps involving Libor or swap 
rates in arrears could be sort of “plain vanilla” derivatives, i.e. they cannot be replicated 
as a combination of elementary transactions like plain vanilla forward rate agreements or 
interest swaps. The proof is elementary and does not depend on any particular stochastic 

Method

Adjustment 
(CZK million)

Market Value 

(CZK million)
1 - Forward Value 

Principle 0,000 -262,714

2 - Adjustment (6.4) 27,673 -235,041

3 - Adjustment (6.5) 22,663 -240,051

4 - Adjustment (6.7) 18,317 -244,397

5 - Adjustment (6.8) 18,356 -244,358

2

3
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interest rate model. It follows that a convexity adjustment is needed, if the forward rates are 
to be used as a proxy for expected value of Libor or swap rates in arrears. 

We have developed two improved convexity adjustment formulas, and a fully 
closed formula using a method applicable to a wide class of convexity related 
derivatives. Application of the formulas to the real life swap gave the results ranging 
from CZK –235 to –263 million with CZK –244 million identiied as the most precise 
valuation. However, our analysis has shown that the result still remains in a mist 
with respect to the estimations of volatilities based on historical data from a not fully 
developed derivative market. The conclusion is that not only the case study swap was 
inappropriate for the City interest rate proile, but moreover it did present a signiicant 
risk in terms of the pricing uncertainty, that is due to existence of a number of complex 
and not always fully consistent models applied even by professionals, and due to lack 
of suficient data on the underlying rates in the still developing market of CZK interest 
rate instruments.
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