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WAVELET DECOMPOSITION OF THE FINANCIAL MARKET
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Abstract:

A heterogeneous agents model with the Worst Out Algorithm (WOA) was considered for obtaining
more realistic market conditions. The WOA replaces periodically the trading strategies that have the
lowest performance level of all strategies presented on the market by the new ones. New strategies
that enter the market have the same stochastic structure as an initial set of strategies. This paper
shows, by wavelets applications, measurement of influences of the trading strategies with the
WOA.
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1. Introduction

Modern finance undergoes an important change of an economic agent perceiving, i.e.,
from a representative, rational agent approach towards a behavioural, agent-based ap-
proach in which markets represented by bindingly rational, heterogeneous agents using
rule of thumb strategies. In the traditional approach, simple analytically tractable
models with a representative, perfectly rational agent have been the main cornerstones
and mathematics has been the main tool of analysis. The new behavioural approach fits
much better with agent-based simulation models and computational and numerical
methods have become an important tool of analysis (Hommes, 2006). The new behavioural,
heterogeneous agents approach challenges the traditional representative, rational agent
framework. Heterogeneity in expectations can lead to market instability and compli-
cated dynamics of prices. Prices are driven by endogenous market forces. In the Hetero-
geneous Agents Model (HAM) typically two types of agents are distinguished, funda-
mentalists and chartists. Fundamentalists base their expectations about future asset
prices and their trading strategies upon market fundamentals and economic factors,
such as dividends, earnings, macroeconomic growth, unemployment rates, efc. Chartists
or technical analysts try to extrapolate observed price patterns, such as trends, and ex-
ploit these patterns in their investment decisions. One of the expressive models was de-
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veloped by Brock and Hommes (Brocks, Hommes, 1998). In our early work (Vo$vrda,
2001) we focused on a simple HAM with two or four types of belief that were fixed for
all our simulations. In our previous papers (see Vo§vrda, Vicha, 2002 a; and Vosvrda,
Vacha, 2002 b, 2003), we employed a memory and some learning schemes in the Brock
and Hommes’s model. In this paper we use the core of the Brock and Hommes’s model
on which we base further extensions, such as a stochastic formation of beliefs and pa-
rameters including a memory length. Another extension is in an application of the Worst
Out Algorithm (WOA). We show (see Vacha, Vosvrda, 2005), how a memory length
distribution in the agents’ performance measure affects a persistence of the generated
price time series. Our motivation is to trace a memory length in the price time series with
different replacement ratios of the improved WOA. The implementation of the WOA
should increase a persistence of returns. A wavelet analysis is a convenient tool for an
activity detection on various scales of the price time series. This one is more convenient
tool for the frequency detection in the price time series than the Fourier analysis because
the price changes in the financial market mood are better detected in time. The wavelet
analysis uses time-scale domain instead of time-frequency domain. Financial markets
have a typical stylized fact in existence clusters of both high positive returns and low
negative returns in the realizations of the price time series. We can retrospectively
analyse which part of the trading strategies set was used on the financial market and we
can estimate their statistical properties.

2. Model

Financial markets are considered as systems of the interacting agents processing new in-
formation immediately. Prices are driven by endogenous market forces. Agents adapt
their predictions by choosing among a finite number of predictors (see Abramovich,
Bailey, Sapatinas, 1999). Each predictor has a performance measure. Based on this per-
formance measure, agents realize a rational choice among the predictors (see Brock,
Hommes, 1998). This approach relied on heterogeneity in the agent information and
subsequent decisions either as fundamentalists or as chartists (see Chiarella, 1992;
Chiarella, He, 2000). Let us consider an asset-pricing model with one risky asset and
one risk-free asset. Let p, be the share price (ex dividend) of the risky asset at time ¢,
and let {y,} beani.i.d. stochastic dividend process of the risky asset. The risk free as-
set is perfectly elastically supplied and pays a fixed rate of return r. The gross
risk-free interest rate #¥ is equal 1+ . The risky asset pays a random dividend. The
dynamics of wealth can then be written as

w1+1=rg'n,1+(pl+1+yt+1_rg'pt)'zn (11)

where z, denotes the number of shares of the asset purchased at time ¢, and a bold face
type denotes random variable at date ¢. Let £, and ¥, denote the conditional expecta-
tion and conditional variance operators, based on the publicly available information
set consisting of past prices and dividends, i.e., on the information set F;, = {p,,
Dy 3 Vi Vil 3. Le€t Ep 4, Vi o denote forecasts of investor of type 4 about the condi-
tional expectation and conditional variance. Investors are supposed to be a myopic
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mean-variance maximizer so that the demand z;,,. for risky asset is obtained by solv-
ing the following criterion

max{E,, [W,.,]-(2/2) ¥, [W,..]}, (12)

where a risk aversion, a, is here assumed to be the same for all traders. Thus the
demand z,,. of type 4 for risky asset has the following form

Epy [Pty — rg-p,]—a-cz “Zhy =0,

Zhi = Eny [Pty — r5p(a-c?) (1.3)
assuming that the conditional variance of excess returns is a constant for all investor
types

Vit Pritye — ¥ p)=0} =0 (1.4)

Let z° be a supply of outside risky shares per investor. Let n;, be a fraction of type
h at date ¢. The equilibrium of demand and supply is

2”}:,: {Eh,: [Pr1tye — "g‘P,]/a'O'z} =z’ (1.5)
=1

where H is the number of different investor types. For the special case of zero supply,
i.e., 2 = 0, the market equilibrium is as follows

rg ‘P, =2nh,l 'Eh,t [Pr+1+Yt+1]- (16)
=1
If there is only one investor type, i.e. H =1, the market equilibrium yields the
following pricing equation
¢ p, =E; [pr1tysml. .7

It is well known that, using the arbitrage (1.7) repeatedly and assuming that the
transversality condition

E
k [pt+ l] (1 8)
@)
holds, a fundamental price of the risky asset is uniquely obtained by
l E +
By (1.9)

()

Thus the fundamental price p,” depends on the stochastic dividend process {y,}.
From the equation (1.7) we obtain the following price equation

p=p +(r*) (p- 1)) (1.10)

For our purpose, 1t is better to work with the deviation x; from the benchmark
fundamental price p,’, i.e., x,= p;— p; -
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3. Evolutionary Dynamics of Investors

Let us admit the following assumptions:

Al)
Epi[ym]=ELym], (2.1)
A2)
Vit @t Y1 =15 p) =V, @1 T Yer — ¥ - p) =01, (2.2)
A3) all forecasts Ej, [p,+1] have the following form
Ene[Pei] = E [P ] /5 (15 ee0n X, 1) (2.3)

Each forecast f," represents a model of the market for which type % believes that

prices deviate from the fundamental price. Let us concentrate on the evolutionary
dynamics of the fractions #;, of different A-investor types, i.e.

réx, = i”h,m 'th (X, 155X ) = i”h,m thr (2.4)
=1 =1

where 7, denotes the fraction of investor type 4 at the beginning of period ¢, before

than the equilibrium price x, has been observed and L is a random number of lags. Now

the realized excess return over period ¢ to the period ¢+1 is computed by

Ziy =pm —1%-p, (2.5)
We need now a measure of profits generated by forecasts. Let a performance
measure 7y, be defined by
Z .
mh = E,| = O 2.6)
a-o,

where
Ons = Eni[Zon ] = fi — 7% %, = [ =Sy, £E = -(l—ﬁn,,. -f,,L.J @.7)
J=t J#1

So the m-performance is given by the realized performance for the A-investor. Let the
updated fractions n;, , be given by the discrete choice probability (Gibb’s distribution)

n,= exp(B ) nh,l—l )/ Yl—l (28)
where

Y, =3 exp(B-m,,). 2.9)
j=1
The parameter B is an intensity of choice. The parameter B is a measure of

investor’s rationality. If the intensity of choice is infinite (B = +o0), the entire mass of
investors uses the strategy that has the highest performance. If the intensity of

PRAGUE ECONOMIC PAPERS, 1,2007 @ 41



DOI: 10.18267/j.pep.296

choice is zero, the mass of investors distributes itself evenly across the set of
available strategies. All forecasts will have the following form

fr=g(x, +.4x,)+b (2.10)

where the g denotes the trend of investor forecasts and the b denotes the bias of investor
forecasts. If b = 0, investor is called a pure trend chaser if g > 0 and a contrarian if g <0.
If g = 0, investor is called purely biased. Investor is upward (downward) biased if >0
(b <0). In the special case g = b = 0, investor is called fundamentalist, i.e., the investor
believes that price return to their fundamental value. Fundamentalists strategy is based
on all past prices and dividends in their information set, but they do not know the
fractions ny, of the other belief types.

4. Simulations and the WOA

For simulation of the financial market patterns, an updated version of the WOA is
used. The algorithm replaces zero, one, two, three, four, five, six, and eight strategies
with the lowest performances by sequel 0, 1, 2, 3, 4, 5, 6, and 8 new strategies (i.e.
0WOA, 1WOA, 2WOA, 3WOA, 4WO0A, SWOA, 6WOA, and 8WOA). A set of all
strategies used for the simulation is composed from fifteen different strategies with
specific parameters for probability distributions of stochastic processes. A replacement
ratio of the market strategies is from 0% to 53.3%. The high replacement ratio is
implemented for a simulation the dramatic changes in the mood on the financial market
are considered. From such conditions on the financial market, there is a bigger chance
of the price turbulence emergence. The WOA replaces periodically the trading
strategies that have the lowest performance level of strategies presented on the market
by the new ones. The new strategies that enter the market are taken from the set that has
the same stochastic parameters as the initial strategies, i.e., the trend has a normal
distribution with the mean is equal 0, and variance is equal 0.16 (g~N(0,0.16)), the bias
has a normal distribution with the mean is equal 0, and variance is equal 0.09
(b~N(0,0.09)), the memory length has an uniform distribution on a range of integers 1,
2, ..., 100 (m~U(1,100)). Simulations are performed with fifteen agents represented by
trading strategies. The intensity of choice, B, is equated to 120. The WOA makes the
replacement after 40 iterations. For example, when we want to replace four strategies
with the lowest performance (4WOA, replacement ratio is 26.6%) the algorithm after
every 40 iterations evaluates and arranges in descending order the performance of all
fifteen strategies in the market and the last four replaces by the new ones. Number of
observations in our simulations is equal 8192. All simulations in our experiments were
executed by Mathcad® software.

For a better understanding of the financial market dynamics with the WOA, we
compare eight cases that differ in the replacement ratio. The first one is without WOA
(OWOA, replacement ratio is 0%), the last one replaces eight strategies (8WOA,
replacement ratio is 53.3%).
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5. Price Returns Time Series Analysis

For estimating and analysing the correlation structures on financial markets,
a nonparametric approach is used. H. E. Hurst discovered very robust nonparametric
methodology, which is called rescaled range, or R/S analysis that is used for estimating
the Hurst exponent. The R/S analysis was used for distinguishing random and
non-random systems, the persistence of trends, and duration of cycles (Peters, 1994).
This method is very convenient for an identification of fractal time series. Starting point
for the Hurst’s coefficient was the Brownian motion as a primary model for random
walk processes. If a system of random variables is an independent identical distributed
then H = 0.5. The values of Hurst exponent, belonging to 0 < H < 0.5, signify an
anti-persistent system. Such a system must reverse itself more frequently than a random
process can represent. This behaviour is very close to a mean-reverting process. The
values of Hurst exponent belonging to 0.5 < H < 1, signify a persistent process that is
characterized by long memory effects. This long memory occurs regardless of time
scale, i.e., there is no characteristic time scale, which is the key characteristic of fractal
time series (see Peters, 1994; Los, 2003; and Percival, Walden, 2000).

For the OWOA case (no replacement of strategies), presented market strategies are
generated randomly and the Hurst exponent, as we expect, is close to the Efficient
Market Hypothesis (EMH) case, i.e., 0.5. When the WOA is implemented, we can see a
strong learning effect that is transformed to long-memory (persistent) behaviour of
price returns.

Figure 1
The Value of the Hurst Exponent with Different Replacement Rate of the WOA

Hurst exponent of retums

OWOA 1WOA 2WOA 3WOA 4WOA SWOA 6WOA BWOA

Ahighest level of persistence is in the 2WOA case (13.3% replacement rate) where the
financial market has enough time to learn. If a number of replaced strategies is higher
than before the learning effect is weakened by the randomly chosen new strategies that
appear on the financial market. With higher replacement ratio, the value of the Hurst
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exponent declines as the learning is “diluted” by new strategies that enter randomly on
the financial market. This phenomenon takes place from the SWOA case to the SWOA
case (33 % - 53 % the replacement rate; see Figure 1 and Table 1). Figure 2 shows the
kurtosis of the price returns time series. A high kurtosis is, in the IWOA case, followed
by falling trend in the kurtosis value as the replacement ratio increases. The reason why
we can observe a decreasing trend of the kurtosis value is the fall of the learning effect,
which is caused by a higher proportion of new incoming strategies (randomly
generated) on the financial market. Similar, but not so strong, results are in the R/S
analysis in Figure 1. Variance of the price returns time series is depicted in Figure 3. We
can observe rising trend as the replacement ratio increases. The higher is a number of
incoming strategies the higher is a price volatility. Such a high fluctuation of strategies
causes that the dynamic system representing the simulated financial market has not time
to stabilize.

Table 1

Hurst Exponent, Kurtosis and Variance of the Simulated Time Series Price Returns

O0WOA | 1WOA 2WOA 3WOA 4WOA | 5WOA 6WOA | 8WOA
Hurst 0.438 0.714 0.732 0.693 0.724 0.687 0.605 0.589
Kurtosis -1.2 56.6 27.7 7.9 21.7 10.0 4.8 4.2
Variance 0.016 0.017 0.024 0.034 0.025 0.036 0.066 0.064

Figure 2
Value of Price Returns Kurtosis versus Different Replacement Rates of the WOA

Kurtosis of retums
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6. A Wavelet Decomposition of the Time Series

Wavelets are a relatively new tool for analysing time series. A wavelet analysis is in
some case complementary to the existing analysing techniques, such as a correlation
and spectral analysis. There are two main versions of the wavelet analysis. The first one
is the continuous wavelet transform, CWT, which is designed to work with time series
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defined over the entire real axis. The second one is the discrete wavelet transform,
DWT, which is suitable for time series defined over a range of integers, i.e., the DWT is
a natural tool for discrete time series analysis. The wavelet transform decomposes
1-dimensional time series into 2-dimensional time-scale (frequency) space. In
particular, while Fourier analysis breaks down a time series into constituent orthogonal
sinusoids of different frequencies (constant periodicities), wavelet analysis breaks
down such a time series into constituent orthogonal wavelets of different scales. A
wavelet is a small wave that grows and decays essentially in a limited time period, in
contrary a sine function is an example of a big wave oscillating on whole real axis (see
Abramovich, Bailey, Sapatinas, 1999; and Los, 2003). A wavelet is a real-valued or
complex function y(.) defined over the real axis (—oo, +o0) and satisfy admissibility

condition. A wavelet y(.) is said to be admissible if its Fourier transform

v = v@we *au, €Y
is such that
j L)‘d <, (3.2)

where fis a frequency. Let x(.) be a function that satisfies I x?(t)dt< o . The condition
(3.2) allows to reconstruct the function x(.) from its continuous wavelet transform (see
Percival, Walden, 2000). There are other two basic properties that a wavelet satisfies.
The first is that the integral of y(.) is zero:

j v (w)du =0. (3.3)
The second condition is that the square of y(.) integrates to unity:

Tw *(wydu=1. 3.4

7. Discrete Wavelet Transform

The DWT is an important practical tool for financial time series analysis. The basic
reasons are: an ability to re-express a time series in terms of coefficients that are
associated with a particular time and a particular dyadic scale that we can also
reconstruct a time series form its DWT coefficients. Given a real-valued time series
{X;: t=0,1,..., N—1}, where the sample size N is taken to be an integer multiple of, and
letj=1,2,..., Jo. Let us put X = (X, Xj,..., Xx1). The partial DWT of level Jy of X is an
orthonormal transform given by

W=WX, (3.5)
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where W is an N dimensional vector of the DWT coefficients, which includes both the
discrete scaling coefficients, and the discrete wavelet coefficients. Here Wisan N x N
real-valued matrix associated with the orthonormal wavelet basis chosen, i.e., the
matrix defining the DWT (if N = 27 and J, = J, we obtain a full DWT). Because of
orthogonality of W, the inverse discrete wavelet transform (IDWT) is given by:

X=W'W (3.6)

where # denotes the transpose of W. The DWT coefficients W and matrix W can
partitioned such that

W, e
W, W,

we W= 3.7
W, W,
v, v,

ie, W;=WXandV, =V, X. W;isan N;=N/2 / dimensional vector of wavelet
coefficients associated with changes at scale A; = 27, W, is an N; x N dimensional
matrix, V, isan N ” dimensional vector of scaling coefficients associated with scale
KJO Yy, isan N, x N dimensional matrix. The time series {X,:¢=0,1,..,N—1} can be
synthesized from W as
X=W’w=JZ WW AV, W, = JX:DJ. +8,, (3.8)
j=1 Jj=1

which defines the multiresolution analysis (MRA) of x(.). Equation (3.8) is an additive
decomposition in terms of the N dimensional vectors D, =W’ 'W ; and S, =V', W,

which are called the jth level detail and the J;® level smooth that are associated with a
particular scale A4; and A, (see Percival, Walden, 2000). We can write the energy

decomposition of x(.) as:

2

: (3.9)

J,
X" =W = 20w [V,

so that HWH ? represents the contribution to energy of the time series x(.) due to changes at
scale A;. The wavelet coefficients in the vector W; are associated with differences in
adjacent averages over a scale A; =2/, while the scaling coefficient in V; is equal to vV N
\'Z H2 = Nx? (see Percival, Walden, 2000, page 62).

Now we can decompose the sample variance of x(.) associated with particular scales
Al,...Ay as

times the sample mean x of X, i.e.,

AZ—L 2__2=i 2—_=i .2= |
&1 =— X[ %> =—|W|"-= N,-ZHWJH gpw(xj), (3.10)
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where the sequence P, (A ;) is the discrete wavelet spectrum. The orthonormality of the
matrix W implies that, for 1 <j, k<J,
WW, k=j

, (3.11)
0 otherwise.

D', D, =W, W,W,W, ={
therefore HD ; Hz = HWJ Hz We can rewrite the equation for the sample variance (3.10) on
scale-by-scale basis as

a§=12HDjHZ j=L.J. (3.12)
N3

Figure 3
The Value of the Kurtosis of Price Returns Time Series with Different Replacement Rate
of the WOA

Varlance of returns

OWOA 1WOA 2WOA 3WOA 4WOA SWOA 6WOA 8WOA

As an illustrative example we compare the IWOA, 6WOA and 8WOA case. In
Figure 4 we have a simulated price time series. The simulation were performed with the
IWOA. i.e., low replacement ratio. At the left side of the Figure 4, around 2500 iteration
there is a positive price jump. The price returns behaviour is analysed in a 6-scale
wavelet detail vectors (D,,...,D¢) decomposition showing that the dynamic phenomena
are identifiable at all six scales, see Figure 5. This is in contrast to the 6WOA case
(Figures 6, 7) where the price turbulence (2000-3000 iterations) is mainly noticeable at
the low scales. The 6WOA case and the SWOA case, Figures 8, 9, have, in comparison to
the lower replacement ratio cases, higher occurrence of significant price swings. This is
also evident in Figures 4-9.
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Figure 4
Price Time Series, the 1WOA Case
price
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Figure 5

The 1WOA Case, a 6-Scale Wavelet Decomposition of the Returns Time Series, Where
the High Frequency Wavelet Details Coefficients Are at the Top and the Low Frequency
Wavelet Details Are at the Bottom
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Figure 6
Price Time Series, the 6WOA Case
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Figure 7
The 6WOA Case, a 6-Scale Wavelet Decomposition of the Returns Time Series, Where

the High Frequency Wavelet Details Coefficients Are at the Top and the Low Frequency
Wavelet Details Are at the Bottom
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Figure 8
Price Time Series, the 8WOA Case
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Figure 9

The 8WOA Case, a 6-Scale Wavelet Decomposition of the Returns Time Series, Where
the High Frequency Wavelet Details Coefficients Are at the Top and the Low Frequency
Wavelet Details Are at the Bottom

D6-D1

1000 2000 3000 4000 5000 6000 7000
time
8. Wavelet Variance Decomposition

The wavelet variance decomposes a variance of the stochastic process on a scale basis
and hence is important in financial time series processing. The wavelet variance is
a succinct alternative to the power spectrum based on the Fourier transform. In this
sense, the wavelet analysis can be seen as a refinement of the Fourier analysis. The key
point is that the Fourier transform highlights a spectrum of a function or signal, but this
frequency decomposition is global rather than localized. Conversely the wavelet
transform offers localized a frequency decomposition. It provides information what
frequency components are present and where they are occurring. Wavelets have
significant advantages over basic Fourier analysis when the object under study is
non-stationary and inhomogeneous (see Abramovich, Bailey, Sapatinas,1999). There
are alternatives to wavelets that provide localized frequency decomposition such as the
windowed or short term Fourier transform, where the signal is restricted to an interval
by multiplying it by a fixed window function. This process is repeated with shifted
versions of the window function and the localized frequency information of the signal is
obtained. In such case the window width is the same for all frequencies, so the amount of
localization remains constant different frequencies. Wavelet analysis provides an
alternative and preferable solution, especially in financial market time series, since it
allows the degree of localization to be automatically and appropriately adapted. Large
window widths are used for investigating low-frequency components, while small
window widths are used for analysing high-frequency components. The wavelet
variance decomposition yields a scale-based analysis that is often easier to interpret
than the frequency-based spectrum (see Percival, Walden, 2000). Such decomposition
helps us to track an evolution of the energy contribution at various scales, which is
related to traders’ investment horizons.

The following Figures 10 and 11 depict a scale energy decomposition, i.e., the
decomposition of wavelet variance. For this decomposition we use a moving variance
(window length 255) of the DWT multiresolution analysis detail vectors Dy,...,Dg, see
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equations 3.8 — 3.12. We are specifically interested in how the energy is changing on
scales during the simulation, the 1 WOA and 8WOA cases are examined. In Figure 10,
the IWOA case, we can see a dramatic change of market structure during simulations,
there is a high increase of the energy at scales D, and D, in time 6000. This increment
lasts for about 200 iterations. In Figure 11, the 8WOA case, we can observe no such
changes as in the 1 WOA case. In comparison to the | WOA case, the overall energy level
at scales D), D,, D; is higher (higher variance). This is caused mainly by higher
replacement ratio of the WOA.

Figure 10
The 1WOA Case. Moving Sum of Squared Wavelet Detail Vectors (window length 255)
of the Daublet (12) DWT Multiresolution Analysis
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Figure 11

The 8WOA Case. Moving Sum of Squared Wavelet Detail Vectors (window length 255)
of the Daublet (12) DWT Multiresolution Analysis
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9. Conclusions

‘We demonstrate that the HAM considerably changes its behaviour when we implement
the WOA.. Due to an implementation of the WOA, we observe a considerable increase of
the time series persistence, but when a number of the replaced strategies is increasing
beyond some point, then the value of the Hurst exponent declines as the learning is
“diluted” by new strategies that enter randomly on the financial market. We can also
observe higher returns time series volatility as the replacement ratio rises.

An application of the wavelet variance is a very convenient tool for activity (energy)
decomposition on scale basis. Our simulations show, that the higher replacement ratio
(it causes an increment in the wavelet variance) the higher activity levels at all scales.
A financial market with WOA (see Figures 10, 11) allocates most the market energy in
the high frequencies (low scales). In this situation newly coming strategies bring into
innovations. These innovations cause an expansion of the price time series volatility.
The R/S analysis and wavelet transforms enable us to reformulate the efficient market
hypothesis by a behaviour of the Hurst exponent, the kurtosis of the returns, the variance
of the returns, and the variance of wavelet resonance coefficients of the returns time
series.
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APPENDIX
Discrete Wavelet Filters

The discrete wavelet and scaling filters which we use in the pyramid algorithm. We
begin with the wavelet filter, that is a high-pass filter; let {h;: [ =0,..., L — 1} be
areal-valued wavelet filter, where L is the width of the filter and must be an even integer.
For {h;} with the width L, we must have 4 # 0 and A, # 0, then we define #,=0 for/<0
and /> L, in fact {#;} is an infinite sequence with at most L nonzero values. A wavelet
filter must satisfy the following three basic properties, (Percival, Walden, 2000):

Sh=o Sw-1 (A1)
1=0 =0

and
ihlhl+2n = Zhlhl+2n =0 n=12.. (A.2)
=0 I=-a

i.e., a wavelet filter must sum up to zero, must have unit energy and must be orthogonal
to its even shifts. We call the last two properties as the orthonormality properties of
a wavelet filters. The second filter is the low-pass filter. Coefficients of the filter are
determined by the quadrature mirror relationship, the filter is called the quadrature
mirror filter (QMF)' {g;} that corresponds to{A;}:

g =(=D)""h_ ., 1=0,.,L-1 (A.3)

The filter {g;} is known as a scaling filter. The wavelet and scaling filters both
satisfy the orthonormality property, i.e., the unit energy and orthogonality to its even
shifts.

Coiflet and Daublet are orthogonal discrete wavelets designed by Ingrid
Daubechies. Translations and dilatations of the Coiflet wavelet filter are depicted in
Figure A.1.

1 The sum of magnitude response of the high-pass and the low-pass filters is equal to one at every
frequency. The QMFs have an ability for the perfect reconstruction of a signal without aliasing
effects.
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Figure A1
Translation (upper row) and Dilatation (lower row) of the Coiflet (12) Wavelet
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Pyramid Algorithm

In practice, we do not compute the product of the N x N dimensional matrix W as the
vector X which involves N* multiplications, but we use the pyramid algorithm
developed by Mallat (1998). The DWT pyramid algorithm is even faster than the fast
Fourier transform algorithm. The algorithm filters the input data vector X using the
wavelet filter {4,} and the scaling filter {g;}, subsamples both filter outputs to half their
original lengths, keeps the subsampled output from the wavelet filter as wavelet
coefficients and repeats the above filtering operations on the subsampled output from
the scaling filter.
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