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OPTIMAL TIMING OF TV COMMERCIALS: SYMMETRICAL
MODEL
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Abstract:
In this paper I study the behavior of two TV broadcasters on a market where viewers per-
petually make a decision whether to watch TV and which TV channel to watch. Both broad-
casters optimally allocate time periods where their TV program is replaced by advertising.
While TV programs represent broadcaster’s costs, commercials bring in revenue that is
proportional to the audience reach. I assume that viewers choose among products and the
outside option following a Markov process where probabilities of transition reflect various
attractiveness of the products. Given symmetrical positions of the broadcasters, I prove that
their optimal strategy is to put their commercial breaks into the same or very close times.
In the case when commercials overlap perfectly, both broadcasters are better off if they
fragment their breaks into shorter breaks keeping the total amount of commercial time the
same.
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1 . I n t r o d u c t i o n

Nowadays, almost all the goods we buy are not produced by a craftsman in our
neighborhood but by a number of variously distant producers. Thus, we do not know
the producers personally and each of them needs to persuade us to buy his or her
particular product. Advertising is a traditional direct way of such a persuasion. As
television became the most frequent medium of information and entertainment, it
also became the most influential medium of advertising. TV broadcasters operate
on two markets. The first one is the advertising market on which they sell their com-
mercial time. The second one is the audience market on which they strive for
viewers. On both markets the TV broadcasters compete with each other, as well as
with other advertising media; e.g., internet, newspapers, radio. Note that the two
markets are linked together; i.e., the higher audience watches a channel, the higher
impact of the advertising on this channel and thus the higher price advertisers are
willing to pay for their spots.
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Setting the price, the timing and the amount of commercials represents a com-
plicated game. This paper focuses on the final decision broadcasters make in this
game; i.e., the timing of their breaks relative to the competitors’ breaks. A brief re-
mark on commercial time fragmentation will also be made. Hence, this paper shows
that given a fixed amount of commercial time, broadcasters are better off if they
divide the current commercial time into shorter but more frequent breaks and coor-
dinate the timing of these breaks.

The paper is organized as follows. In Section 1 I explain intuition behind the
model, show an example of legal framework and review the literature. In Section 2
a two-period symmetric model is presented. In Section 3 I describe a general con-
tinuous-time model and in Section 4 the model is solved for 2 symmetric broadcas-
ters. In Section 5 I make a remark on commercial time fragmentation and in Secti-
on 6 I conclude the paper.

1. 1 Intuition Behind the Model

The model is based on the very simple and intuitive assumption that viewers
prefer watching a TV program to watching advertising and that the longer a com-
mercial break is, the fewer people watch it. TV broadcasters are aware of this and
thus attract viewers by programs, which represent broadcasters’ costs, and interrupt
the programs by advertising which bring in revenue.

Of course, the audience reach of a given channel depends also on the attracti-
veness of competitors’ programs. This raises an interesting question whether the TV
stations should place their commercial breaks into the same times; i.e., whether
there is an equilibrium period when all the broadcasters on the market air their com-
mercials. The theoretical result presented below is more complicated and depends
on the parameters of the model.

One can object to the idea that TV broadcasters can set the length of commer-
cial breaks such that it maximizes their revenue. The legal system usually imposes
limitations on the amount of advertising aired during a TV program. Naturally, we can
expect that this limit is shorter than the amount of commercials optimally chosen by
the broadcasters. Such limitations obviously increase the price of advertising and
make the broadcasters’ decision process simpler; i.e., they have to decide about the
optimal broadcasting time only. On the market there is usually a public-service
broadcaster, a state body that bears certain social functions and that is more rest-
ricted in advertising than commercial broadcasters. The social function can be con-
sidered as a restriction on the attractiveness of the broadcaster’s program. Natural-
ly, we can ask how much revenue the public-service broadcaster loses due to
restrictions on its advertising and programming. This asymmetry is an interesting
topic for research; however, this paper focuses on the symmetrical position of the
broadcasters.

1. 2 Legal Framework

As mentioned above, broadcasters on TV markets are legally restricted. I will
demonstrate these restrictions in the following summary of the Czech legal fra-
mework as it is described in Act No. 468/1991. The law classifies broadcasters into
public-service broadcasters and licensed commercial broadcasters. While there is
one state organization operating two channels as the public-service broadcaster on
the Czech TV market, there are more commercial broadcasters and their number
grows.
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The public-service broadcaster must not allocate more than 1 % of total broad-
casting time to advertising, and in the time period from 7 p. m. to 10 p. m. adverti-
sing must not exceed 6 minutes in one hour. The total advertising time can be ex-
panded up to a total of 10 % by airing direct offers to sell, buy or rent goods and
services (TV shopping) with a limit of one hour a day. Commercial broadcasters’
advertising time is limited by 10 % of the total broadcasting time that can be expan-
ded up to 20 % by TV shopping. Total advertising time on a commercial channel must
not exceed 12 minutes in any hour and TV shopping must not exceed one hour a
day.

1. 3 Literature Review

There is very little economic literature published on timing of commercials. For-
tunately, some relevant sources can be found in operations research and manage-
ment science literature. Some papers like Gabszewicz, Laussel and Sonnac (1999)
focus on some aspects of TV broadcasters’ behavior but the only work modeling ti-
ming of commercials, I found, was Epstein (1998). Nevertheless, the assumptions
of my model are different from Epstein’s and my modeling approach is original.

Gabszewicz, Laussel and Sonnac produced an interesting paper on the compe-
tition of TV broadcasters. Unlike my paper, they focus on program competition and
length of the commercials in a three-stage game. They assume that there exist two
types of programming (e.g., entertainment and culture), each viewer has his own
most favorite mixture of these types and there are two channels on the market. Thus
the two broadcasters have to determine an optimal mixture of their programs. This
Hotteling-type competition predicts that the two channels always mix their programs,
the mixtures are different and the viewers can be classified into three groups. One
group of viewers only watch channel 1, another group of viewers only watch chan-
nel 2 and the third group watches a combination of both. Regarding the length of
commercials, they introduce advertising saturation level as an exogenous variable
such that if the length of commercials exceeds this level, viewers don’t watch the
channel at all. Finally they prove that the broadcasters set the amount of commerci-
als equal to this saturation level.

Some assumptions of Gabszewicz, Laussel and Sonnac do not seem to be rea-
listic. For instance, I find the saturation level of viewers to be an artificial instrument
to obtain reasonable results. Obviously, no such level exists, as there are infomerci-
als on some markets. The infomercials air commercials only and have positive au-
dience reach. This instrument can be interpreted as a need for state regulations;
given the setting of the model and no saturation level the broadcasters will air pure-
ly commercials and thus the channels will become infomercials. They also assume
that viewers are uniformly distributed on an interval [0,1], where 0 represents wil-
lingness to watch entertainment only and 1 willingness to watch culture only. The
results would be more convincing if they can be shown to be robust for other set-
tings.

Epstein focuses on the same question as this paper; i.e., the timing of commer-
cials of two competing channels. He sets up a model where broadcasters’ payoffs
are determined by the average number of viewers watching the channel and this
number is a linear function of the starting and ending times of the commercials.
Under these simplified and linearized assumptions, he proves that broadcasters’
optimal strategy is perfect cooperation; i.e., perfect overlap of their commercials.
Epstein supports his theoretical findings by an empirical analysis studying four U.S.
networks (NBC, ABC, CBS, and FOX). The null hypothesis that all the networks bre-
ak for commercials at the same time cannot be rejected.



PRAGUE ECONOMIC PAPERS, 4, 2002 � 359

The theoretical part of Epstein’s paper contains assumptions that can be critici-
zed. For example, the assumption that an infomercial channel would not be watched
by any viewers is not realistic. Furthermore, the broadcasters’ payoff function is ra-
ther simple and seems to be constructed just to give the expected results. Never-
theless, these simplifications, although unrealistic, give intuitive and straightforward
results which are supported by the empirical study. While Epstein creates the broad-
casters’ payoff function artificially, I derive the payoff from the number of viewers
watching the commercials, assuming that viewers choose among the channels fol-
lowing a Markov process.

2 . S y m m e t r i c  2  –  P e r i o d  M o d e l

First, a symmetric 2-period model will be presented. The purpose of this model
is to illustrate the concept applied in this paper in a simple environment, and thus,
to provide a better insight into a more sophisticated model in Section 3.

2. 1 Set up: Markov Chain in Discrete Time

Let’s assume a discrete-time model with 2 TV broadcasters and a large popula-
tion of agents (viewers). The viewers can be in 3 states; i.e., each of them is
watching one of 2 channels (states 1 and 2) or not watching TV at all (state 0). The
broadcasting scheme of both channels consists of TV programs and commercials.
After a TV program there is always a commercial break and vice versa. The length
of the TV program and the commercial break are the same. Without loss of genera-
lity let this length be 1. Assume that the probabilities of switching from one state to
another equal p for state 0 and the channels broadcasting TV programs, and equal
r for the channels broadcasting commercials. Hence, the Markov probability matri-
ces are
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for the case of commercial breaks on both TV1 and TV2. Let 0 < p < r < 0.5; i.e., let
all probabilities be well defined and viewers prefer watching TV programs to adver-
tising.

Broadcasters’ revenue is given by the audience reach of the commercial break. I
assume that the block (TV program, commercials) or (commercials, TV program)
repeats many times a day. Therefore, I consider a fixed-point distribution; i.e., the
distribution at time t is the same as the distribution at time t+2. The Markov process
as defined above guarantees uniqueness of such a fixed point and fast convergen-
ce to it irrespective of the initial distribution. Under this setting, the problem redu-
ces into a two-period model with a fixed-point distribution where the broadcasters
have two options; to place TV programs and commercials into the same time units
or to air the TV program during the competitor’s commercial time.

The audience reach of one TV channel as a function of time is illustrated in Fi-
gure 1. Note that this figure is derived for the fixed-point distribution. Thus we can
focus simply on the first two periods and study whether the opponent’s best respon-
se is to do the same or to start with a commercial break in the first period and fol-
low with a TV program.
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Figure 1
Audience Reach as a Function of Time

2. 2 Solution to the Discrete – Time Symmetric Model

As discussed above, I focus on comparing only two cases. The first one is per-
fect coordination; i.e., both channels broadcast commercials at the same time. In
Figure 1, this corresponds to a situation where both stations air TV program during
odd units and commercials during even units. The second case is a contra strategy;
i.e., the commercial breaks do not overlap. In Figure 1, this corresponds to a situa-
tion where one station airs commercials during even units and the other during odd
units.
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The model is symmetric and so are the payoffs. The payoff of each TV broad-
caster in perfect coordination case is
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while in the contra strategy case the payoff is
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Given 0 < p < r < 0.5, the difference is a quotient of two products of positive num-
bers; hence, the difference is positive too. Therefore, perfect coordination is the
optimal strategy of both channels.

3 . G e n e r a l  M o d e l  i n  C o n t i n u o u s  T i m e

In this section, a general continuous-time model for n broadcasters is presen-
ted. Unfortunately, this model cannot be solved in this general set-up because it
leads to too extensive and inconclusive formulas. Therefore, it is solved in Section
4 in a symmetric set-up for 2 channels.

3. 1 Viewers’ Behavior as a Markov Process in Continuous Time

Let’s assume that there are n TV broadcasters on the market and large popula-
tion of agents (viewers) who can be in n+1 states; i.e., each of them is watching one
of n channels (states 1,…, n) or not watching TV at all (state 0). The key assumpti-
on of my model is that the numbers of agents in particular states change over time
as if the agents follow a homogeneous Markov process in continuous time. Denote
S(t) as the state of a specific agent at time t, pi,j as the probability of transition from
state i to state j and qi,j as the transition rate from state i to state j; i.e.,

pi,j (∆t) = P[ S(t + ∆t) = j | S(t) = i ], i,j = 0, …, n,
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Let P(t)=( pi,j (t)) be the matrix of probabilities, Q=( qi,j ) be the matrix of rates and
d(t) be the distribution of agents among states at time t. Then,

d
.
(t) = QT.d(t)
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defines the system of differential equations. The solution is

d(t) = (eQ.t)T.d(0) = V.Diag{eλ1.t, eλ2.t,…, eλn + 1.t}.V -1.d(0),

where V is a matrix formed by the eigenvectors of QT, λ's are corresponding eigen-
values and Diag stands for a diagonal matrix.

3. 2 Advertising

Assume that at time t the distribution of viewers among states is given by vector
d(t) and that a commercial break starts on channel k. Thus, the viewers will leave
this channel at higher rates; i.e., there will be new rates q~i,j such that |q~k,j| ≥ |q~k,j|
and q~i.j = qi,j for i ≠ k. This will lead to continuous decline in the audience reach of
channel k unless the parameters change; e.g., channel k stops the commercial bre-
ak or another channel starts airing commercials.

Assume that the price of one commercial time unit is proportional to the number
of viewers watching it. Hence, TV broadcasters’ revenue maximization can be con-
sidered as the maximization of the audience watching commercials. There are two
natural ways we can define broadcasters’ revenues from a commercial break. The
first is an integral over the number of viewers watching the channel from the start of
the commercial break until its end; let’s call it integral payoff. The second is the
length of the commercial break multiplied by the minimum audience reach during
this break; let’s call it minimum payoff. The integral payoff means that either the pri-
ce of advertising differs within one commercial break, which is not realistic, or that
the price is determined by the average audience reach. Thus, some advertiser would
pay for more viewers than would actually watch their ads. On the other hand, the
minimum payoff approach implies that the price is the same for all ads within one
block and each advertisement is watched by at least as many viewers as corre-
sponds to its price.1)

1) The minimum payoff is also consistent with a more advanced setting where viewers can learn the
timing of commercials and thus adjust. By adjusting I mean that viewers who leave a commercial break in
the middle are better off if they leave immediately at the start of the break and return when the commerci-
als are over. That means that all commercials within one break are watched by an equal number of viewers.

Figure 2
Integral and Minimum Payoffs
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Integral and minimum payoffs are illustrated in Figure 2. While area A represents
minimum payoff, integral payoff is represented by area A+B. Due to the aspects of
the integral payoff stated above, I assume in this paper that the price of advertising
is defined by the minimum payoff. Comparing our results with the integral payoff
approach may be an interesting issue for future research.

Of course, this is just the simplest illustration of a broadcaster’s behavior under
the unchanged parameters of the other channels. The purpose of my model is to
study the dynamics of the system if more broadcasters start their advertising blocks
at the same or very close times.

4 . S o l u t i o n  t o  t h e  S y m m e t r i c  M o d e l  i n  C o n t i n u o u s
T i m e

4. 1 Set-up of the Model

Assume that n=2; i.e., there are two TV broadcasters on the market and thus the
viewers can be in one of three states: not watching TV, watching TV1, or watching
TV2. Assume that all transition rates among states equal p if there are no commer-
cials and that they are k-times higher for the channel broadcasting commercials.
Hence, the matrices of transition rates are
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for the case of a commercial break on TV2 and
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for the case of commercial breaks on both TV1 and TV2. Let p > 0 and k > 1; i.e., let
transition rates be positive and viewers prefer TV programs to advertising.

Further assume that the broadcasters place their commercial breaks of length L
into a time interval T and they repeat the same action for every interval; naturally, 0
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< L < T. Without loss of generality, let TV1 start its commercial breaks at time 0, T,
2T, 3T, … . TV2 can place its commercial break overlapping the commercial break
of TV1 or after it. The aim is to study the environment in the long run when the pro-
cess reaches its fixed point. Hence, we can focus our analysis on one cycle of length
T where the distribution of viewers at time 0 equals the distribution at T. For fixed
parameters p, k, L, T, such a distribution exists, is unique and the system conver-
ges to it irrespective of the starting distribution.2) The idea of a fixed point is neces-
sary because the time between two commercial breaks is not sufficient for the pro-
cess to converge to its stationary levels and we assume that the broadcasters repeat
the same action each cycle. Imagine, for instance, that a broadcaster airs 18 minu-
tes of a program followed by 2 minutes of commercials. This program scheme is fi-
xed and repeated forever; then, T=20 and L=2.

Next, I will analyze the optimal timing of commercials. For this purpose, I need
to distinguish two cases. First, I will consider the no overlapping case where TV2
starts its commercial break after the end of TV1’s commercials; thus, the breaks do
not overlap. Second, I will focus on the overlapping case where the two breaks over-
lap at least partially.

4. 2 No Overlapping

TV1’s commercial break lasts from time 0 to time L and TV2’s commercials start
at time L+t and end at 2L+t. In other words, TV2’s commercials start t after the end
of TV2’s commercials. Let’s find the optimal t for both TV’s. Denote
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Then, the distribution d(0) at time 0 must satisfy
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Analogously, we could derive all d(s) for 0 < s< T.
Considering the minimum payoff approach, TV1’s revenue equals d2(L).L and

TV2’s revenue is d3(2L+t).L.
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Obviously, the numerator is negative. It can be shown that the denominator is
negative3) too. Hence, the first derivative of TV1’s revenue with respect to t is posi-

2) Just imagine the system as a Markov chain in discrete time where one time unit corresponds to our
cycle of length T. The probability matrix is well defined and the process is homogeneous, finite and irredu-
cible; thus, the stationary distribution exists and is unique. The convergence is satisfied as well.

3) Lemma: –4e4Lp + 6ep(2L(1 + k) + 3T) + e4Lp + 3pT + e4kLp + 3pT – 4e4kLp + 6pT < 0
Proof: Solve the inequality for k. First, substitute x for e2pLk and solve it as a quadratic equation.
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Obviously, x1 < -epL and 0 < x2 < epL. For x = epL the expression equals -4e4pL(e3pT-1) which is negative.
Hence, for all x > epL it must be negative too which means that for all k>1 the inequality holds. QED.
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tive. That means the greater t the higher TV1’s revenue. However, 0 < t < T-2L. The-
refore, the optimal strategy for TV1, given that the commercial breaks do not over-
lap, is to place its commercial break just after TV2’s commercials.
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No doubt, the numerator is positive. The denominator equals the previous deno-
minator; hence, the derivative is negative. Thus, the optimal strategy for TV2, given
that the commercial breaks do not overlap, is to place its commercial break just af-
ter TV1’s commercials.

The result given above is intuitive (see Figure 3). As t decreases, the beginning
of TV2’s advertising block gets closer to the end of TV1’s commercials, TV2’s audi-
ence during commercials increases; thus, TV2’s revenue (shaded area in the graph)
increases. Analogously, TV1’s advertising block gets further from the end of TV2’s
commercials,4) TV1’s audience during commercials declines; thus, TV1’s revenue
declines. This intuition does not take into account the shift of the fixed-point distri-
bution; i.e., the distribution at time 0 is not considered to be affected by t. Of cour-
se, the formulas above were calculated rigorously and they include the impact of a
change in t on the fixed-point distribution.

4) Note that the cycle of length T circulates and that time is relative here. Time 0 can be set arbitrarily;
I set it as the beginning of TV1’s commercial break.

Figure 3
Illustration of the Timing: No Overlapping
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To sum up, assuming that the commercial breaks do not overlap, both TV broad-
casters want to place their commercial breaks just after their competitor’s commer-
cials. It seems that the broadcasters tend to place their commercials into one time;
i.e., they seem to be better off if their commercials overlap to a certain extent. Whe-
ther this conclusion is true and to what extent will be shown in the following secti-
on.
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4. 3 Overlapping Commercials

TV1 starts its commercial break at time 0 and TV2 at time t, where 0 < t < L. This
means that from time 0 to time t only TV1 airs commercials, from time t to time L
there are commercials on both channels, from time L to time L+t only TV2 broad-
casts commercials and from L+t to T there are no commercials. Then, the distribu-
tion d(0) at time 0 must satisfy

Mn(T-L-t).M2(t).Mb(L-t).M1(t).d(0)= d(0)

Analogously we could derive all distributions d(s) for 0 < s< T.
Unfortunately, the formulas for TV1’s and TV2’s revenues and their first derivati-

ves with respect to t are too extensive. Therefore, it is not possible to conclude
whether they are positive or negative and I do not present them here. However, I
evaluated the derivatives for a large range of values and I observed the following:

– the revenue of TV2 is a strictly decreasing function of t on domain [0,L];
– the revenue of TV1 is either a decreasing function of t or it has a unique local

maximum at t* on domain (0,L). Moreover, it appears that there exists a threshold K
such that for k < K the revenue is a strictly decreasing function of t and for k > K
there is a maximum at t*. Figure 4 shows5) the threshold K as a function of transition
rate p. The points in the graph above the line represent values (p,k) for which TV1’s
optimal strategy is to place the commercial break t* before TV2’s commercial, and
points below the line represent values (p,k) for which TV1’s optimal strategy is a
perfect overlap.

Figure 4
Sensitivity Threshold as a Function of Transition Rate
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5) The graph was derived for T=20 and L=2. This corresponds to a situation where a commercial bre-
ak of 2 minutes repeats every 20 minutes; thus, commercials constitute 10 % of total time. Note that the
absolute values of T, L and p do not play any role; i.e., the results for setting (T, L, p) are the same as for
(c.T, c.L, p/c), where c is an arbitrary positive constant. For any (T, L) the graph of K is a decreasing and
convex function of p.

The intuition in the overlapping case does not follow the theoretical results as
straightforwardly as if the commercials do not overlap. As illustrated in Figure 5, as
TV2 starts its break closer to the beginning of TV1’s commercial, it starts with a
smaller audience reach but faces a more favorable regime (the audience decline is
more severe if the other channel’s commercials have already finished). The numeri-
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cal result shows that the latter effect (a more favorable regime) preponderates the
former (greater initial audience). As TV1 starts airing commercials at a time closer
to the beginning of TV2’s commercial break, it also faces a more favorable regime.
However, there is a new aspect. If k and t are sufficiently high, the audience reach
of TV1 at time t is actually under a stationary level in the regime where both chan-
nels air commercials; thus, TV1’s audience starts growing after t although the com-
mercials are being broadcast. That is why perfect overlap might not always be the
optimal strategy, and the broadcaster is better off to start the commercials t* before
its competitor. As in the no-overlapping case, this intuition does not take into account
the shift of the fixed-point; i.e., the distribution at time 0 is not considered to be af-
fected by t. However, the formulas above were calculated rigorously and they inclu-
de the impact of a change in t on the fixed-point distribution.

Figure 5
Illustration of the Timing: Overlapping
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To sum up, if the viewers are less sensitive to advertising, and thus k is small,
the optimal timing of both broadcasters is a perfect overlap; i.e., they start at the
same time and they are in equilibrium. However, there exists a sensitivity threshold
K such that if k > K, the optimal strategy is a partial overlapping where both broad-
casters want to start t* before the competitor. Obviously, the latter implies no equili-
brium in pure strategies.

Let’s compare the results of the discrete-time model in Section 2 with the more
general continuous-time model in Section 4. The former predicts that the channels
should perfectly overlap their commercial breaks given that they have only two op-
tions: perfect coordination or contra strategy. The optimal behavior in the latter mo-
del can be either perfect overlap or partial overlap because the set of feasible stra-
tegies is continuous. Applying the results of the discrete-time model in the partially
overlapping (disequilibrium) case in the continuous-time model, we can say that
although perfect overlap is not the optimal strategy, it is still better than no overlap.

5 . R e m a r k  o n  t h e  C y c l e  L e n g t h

Although the optimal timing of commercial breaks is the primary interest of this
paper, it is not the only decision broadcasters have to make. The timing of commer-
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cials is in fact the last stage of a game played by the broadcasters. Besides the
supply-demand variables; i.e., the price and the amount of commercials, the broad-
casters have to decide the number and the length of the breaks in which the com-
mercials will be aired. Recall the set-up of Section 4; i.e., the continuous-time sym-
metric model with 2 TV broadcasters. Then, the broadcasters also set the length of
cycle T and the length of commercial break L. In this section the optimal cycle length
will be briefly discussed.

Let’s assume the Section 4 set-up where the commercial breaks perfectly over-
lap.6) Given that the broadcasters air commercial breaks of length L each cycle of
length T, they can achieve the same amount of commercial time if they air breaks of
length L/2 within a cycle T/2. This is illustrated in Figure 6.

6) The disequilibrium case where partial overlap is optimal is not analytically feasible. However, the
results are likely to be the same.

7) Both broadcasters have the same revenue because of the symmetry of the set-up.

Figure 6
Illustration of Commercial Time Fragmentation
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Now let’s compare the revenue of the broadcasters7) if they choose length T with
a revenue in cycle T/2. In terms of Figure 6, we compare area A with twice that of
B. Let R(p,k,L,T) be the revenue of perfect overlapping channels with given para-
meters. It can be shown that
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Hence, cutting the length of the cycle simultaneously to half is profitable for both
channels. This result suggests that greater fragmentation of commercials into uni-
formly distributed very small breaks brings in higher revenue for both channels.
However, in reality there are some limitations. The first limitation is the commercial
spot itself. It needs some time to have an impact on the viewer; i.e., to communica-
te the information to the viewer without interruption. The second limitation is the
program (e.g., a movie) during which the commercial is aired. The more fragmen-
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ted the program is, the less enjoyable it is; thus, transition rate p changes while in
the analysis p was assumed to be fixed.

In reality we can observe that commercial breaks are fragmented. However, the
fragmentation is not infinite and both limitations mentioned above are in effect. The
first is natural: no single commercial spot is split into smaller parts. Nevertheless,
the spot itself is not the only actual limitation because we can also observe more
spots in one commercial break. This grouping occurs in order to not decrease the
attractiveness of the program; i.e., the second limitation.

6 . C o n c l u s i o n

In this paper I assume that TV viewers switch among channels as if according to
a homogeneous Markov process. However, the parameters of the process depend
on the type of broadcasting. If there is a commercial break on a particular channel,
viewers leave this channel at higher rate than if there is a movie. The broadcasters
are aware of this, and thus, they place their commercials in order to maximize their
revenue.

The solution to the symmetric model with 2 players in discrete time suggests that
broadcasters’ optimal strategy is coordination; i.e., they are better off if they air their
breaks at the same times.

In the symmetric continuous-time model with two broadcasters, equal rates of
switching and a fixed length of commercial breaks, I have shown that the broadcas-
ters will place their commercials to the same or very close times. Moreover, if the
viewers’ sensitivity to commercials is low, the commercial breaks will perfectly over-
lap; i.e., there is equilibrium in pure strategies in which the broadcasters start and
finish advertising at the same times. We have also shown that broadcasters tend to
fragment the commercials into more breaks. Nonetheless, they are limited in the
extent of fragmentation by the length of one spot and by the displeasure caused to
the viewers.

Unfortunately, the extensive formulas of the analytical results heavily restricted
the number of questions which were intended to be answered by this model. Cali-
brating the model using a real data set or simulations run for more general cases
are definitely interesting directions for future research on this topic.
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