Prague Economic Papers 2021, 30(3):336-357 | DOI: 10.18267/j.pep.765

Random Forest as a Model for Czech Forecasting

Katerina Gawthorpe ORCID...a
a Prague University of Economy and Business, Prague, Czech Republic

Random forest models have recently gained popularity for economic forecasting. Earlier studies demonstrated their potential to provide early warnings of recession and serve as a competitive method to older prediction models. This study offers the first evaluation of the random forest forecast for the Czech economy. The one-step-ahead forecasting results show high accuracy on the Czech data and are proven to outperform forecasts from the Czech Ministry of Finance and the Czech National Bank. The following multi-step random forest forecast, estimated for the next four quarters, shows results similar to those from the central institutions. The main difference stems from the household and industrial confidence variables, which significantly impact on the random forest forecast. The variable-importance analysis further emphasizes the soft variables as valuable determinants for Czech forecasting. Overall, the findings motivate other forecasters to exercise this method.

Keywords: Random forest, Czech Republic, forecast, regression tree
JEL classification: C32, C63, E37

Received: March 18, 2020; Revised: October 31, 2020; Accepted: December 7, 2020; Prepublished online: February 10, 2021; Published: June 11, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Gawthorpe, K. (2021). Random Forest as a Model for Czech Forecasting. Prague Economic Papers30(3), 336-357. doi: 10.18267/j.pep.765
Download citation

References

  1. Alessi, L., Detken, C. (2011). Quasi Real Time Early Warning Indicators for Costly Asset Price Boom/Bust Cycles: A Role for Global Liquidity. European Journal of Political Economy, 27(3), 520-533, https://doi.org/10.1016/j.ejpoleco.2011.01.003 Go to original source...
  2. Aliyev, I., Bobková, B., Štork, Z. (2014). Rozšířený DSGE model české ekonomiky. Praha: Ministerstvo financí České republiky. Available at: https://www.mfcr.cz/cs/ o-ministerstvu/ odborne-studie-a-vyzkumy/2014/rozsireny-dsge-model-ceske- ekonomiky-17282
  3. Atkeson, A., Ohanian, L. E. (2001). Are Phillips Curves Useful for Forecasting Inflation? Quarterly Review, 25(1), 1-11, https://doi.org/10.21034/qr.2511 Go to original source...
  4. Baybuza, I. (2018). Inflation Forecasting Using Machine Learning Methods. Russian Journal of Money and Finance, 77(4), 42-59, https://doi.org/10.31477/rjmf.201804.42 Go to original source...
  5. Biau, O., D'elia, A. (2010). Euro Area GDP Forecast Using Large Survey Dataset-A Random Forest Approach. EcoMod2010 No. 259600029. Available at: https://ideas.repec.org/p/ekd/002596/259600029.html
  6. Blanchard, O. (2016). The Phillips Curve: Back to the '60s? American Economic Review, 106(5), 31-34, https://doi.org/10.1257/aer.p20161003 Go to original source...
  7. Boulesteix, A.-L., Janitza, S., Kruppa, J., et al. (2012). Overview of Random Forest Methodology and Practical Guidance with Emphasis on Computational Biology and Bioinformatics: Random Forests in Bioinformatics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(6), 493-507, https://doi.org/10.1002/widm.1072 Go to original source...
  8. Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32, https://doi.org/10.1023/A:1010933404324 Go to original source...
  9. Česká národní banka (2020). Nový strukturální model "g3". Praha: Česká národní banka. Available at: https://www.cnb.cz/cs/menova-politika/zpravy-o-inflaci/tematicke-prilohy-a-boxy/Novy-strukturalni-model-g3
  10. Česká národní banka (2020). Zprávy o inflaci. Praha: Česká národní banka. Available at: https://www.cnb.cz/cs/menova-politika/zpravy-o-inflaci/
  11. Český statistický úřad (2020). Český statistický úřad. Available at: https://www.czso.cz/csu/czso/domov
  12. Cheng, H., Tan, P.-N., Gao, J., et al. (2006). Multistep-Ahead Time Series Prediction. Proceedings of the 10th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, pp. 765-774, https://doi.org/10.1007/11731139_89 Go to original source...
  13. Database-Eurostat (2020). Available at: https://ec.europa.eu/eurostat/data/database
  14. Engel, C. (2000). Long-run PPP May Not Hold After All. Journal of International Economics, 51(2), 243-273, https://doi.org/10.1016/S0022-1996(99)00011-2 Go to original source...
  15. Fernández Delgado, M., Cernadas García, E., Barro Ameneiro, S., et al. (2014). Do We Need Hundreds of Classifiers to Solve Real World Classification Problems? 11(1), https://doi.org/10.1117/1.JRS.11.015020 Go to original source...
  16. Gawthorpe, K. (2019). Input-Output DSGE Model for the Czech Republic. Prague Economic Papers, 28(5), 612-630, https://doi.org/10.18267/j.pep.724 Go to original source...
  17. Gawthorpe, K. (2020). Forecasting VAR Analysis for a DSGE-VAR Model. Ministerstvo financí České republiky. Prague Working Paper No. 1/2014.
  18. Goulet Coulombe, P. (2020). The Macroeconomy as a Random Forest. Social Science Research Network, https://doi.org/10.2139/ssrn.3633110 Go to original source...
  19. Herrera, G. P., Constantino, M., Tabak, B. M., et al.(2019). Long-term Forecast of Energy Commodities Price Using Machine Learning. Energy, 179, 214-221, https://doi.org/10.1016/j.energy.2019.04.077 Go to original source...
  20. Hou, Y., Edara, P., Sun, C. (2015). Traffic Flow Forecasting for Urban Work Zones. IEEE Transactions on Intelligent Transportation Systems, 4(16), 1761-1770, https://doi.org/10.1109/TITS.2014.2371993 Go to original source...
  21. Khaidem, L., Saha, S., Dey, S. R. (2016). Predicting the Direction of Stock Market Prices Using Random Forest. ArXiv:1605.00003 [Cs], 1-20. Available at: http://arxiv.org/abs/1605.00003
  22. Kucharčuková, O. B., Franta, M., Hájková, D., et al. (2013). What We Know About Monetary Policy Transmission in the Czech Republic: Collection of Empirical Results. Czech National Bank. Prague CNB Research and Policy Notes No. 1/2013.
  23. Kumar, M., Thenmozhi, M. (2006). Forecasting Stock Index Movement: A Comparison of Support Vector Machines and Random Forest. Indian Institute of Capital Markets 9th Capital Markets Conference Paper, pp. 1-16, https://doi.org/10.2139/ssrn.876544 Go to original source...
  24. Li, X., Wang, Y., Basu, S., et al. (2019). A Debiased MDI Feature Importance Measure for Random Forests. Advances in Neural Information Processing Systems, 32(2019), 8049-8059. Available at: http://papers.nips.cc/paper/9017-a-debiased-mdi-feature-importance-measure-for-random-forests.pdf
  25. Mei, J., He, D., Harley, R., et al. (2014). A Random Forest Method for Real-time price Forecasting in New York Electricity Market. 2014 IEEE PES General Meeting | Conference Exposition, pp. 1-5, https://doi.org/10.1109/PESGM.2014.6939932 Go to original source...
  26. Nguyen, T.-T., Huang, J., Nguyen, T. (2015). Unbiased Feature Selection in Learning Random Forests for High Dimensional Data. The Scientific World Journal, 2015, 1-18, https://doi.org/10.1155/2015/471371 Go to original source...
  27. Nyman, R., Ormerod, P. (2017). Predicting Economic Recessions Using Machine Learning Algorithms. ArXiv:1701.01428 [q-Fin], 1-14. Available at: http://arxiv.org/abs/1701.01428
  28. Ministerstvo financí České republiky (2020). Available at: https://www.mfcr.cz/cs
  29. Pavlyshenko, B. M. (2019). Machine-Learning Models for Sales Time Series Forecasting. Data, 4(1), 15, https://doi.org/10.3390/data4010015 Go to original source...
  30. Pfeifer, J. (2020). A Guide to Specifying Observation Equations for the Estimation of DSGE Models. 81. Available at: https://bbcb79fe-a-62cb3a1a-s-sites.googlegroups.com/site/pfeiferecon/Pfeifer_2013_Observation_Equations.pdf?attachauth=ANoY7cp7k-tSpM7wwJb6nm7QlIBSe6wZV2PlWyAJYT84Tjjh_mdrAXqDPNgA_5R7bPGKEBMMyyQa6aEY7I7d8czTAV-m9H-XgTGWHSkXDJM1gxZktgDQxQ26nVWEY6cf0kst26-L_uKNvmzCEmTGKtTTlNPadMlM-QpA7MVnSrd9fEQ-qZ4wcQ4XIwUekxIMq_8KvEXufe1M9wWLS5w8njupRJKKE6z_Bkwk9qkbmOz7TuQAmySkglXN_wkQhFinqEjE5IcdUMqh&attredirects=2
  31. Ramakrishnan, S., Butt, S., Chohan, M. A., et al. (2017). Forecasting Malaysian Exchange Rate Using Machine Learning Techniques Based on Commodities Prices. 2017 International Conference on Research and Innovation in Information Systems (ICRIIS), pp. 1-5, https://doi.org/10.1109/ICRIIS.2017.8002544 Go to original source...
  32. Wager, S., Athey, S. (2018). Estimation and Inference of Heterogeneous Treatment Effects using Random Forests. Journal of the American Statistical Association, 113(523), 1228-1242, https://doi.org/10.1080/01621459.2017.1319839 Go to original source...
  33. Wolman, A. L. (2003). Real Implications of the Zero Bound on Nominal Interest Rates. Federal Reserve Bank of Richmond. Richmond Working Paper No. 03-15, https://doi.org/10.2139/ssrn.2184489 Go to original source...
  34. Woloszko, N. (2020). Adaptive Trees: A New Approach to Economic Forecasting. OECD Economics Department. Paris Working Papers No. 1593, https://doi.org/10.1787/5569a0aa-en 3.2. Tuning the Hyper-parameters of an Estimator-Scikit-Learn 0.22.2 Documentation. (2020). scikit-learn developers. Available at: https://scikit-learn.org/stable/modules/grid_search.html Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.